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1. Introduction

Let C be the set of all finite complex numbers. Also let f be an entire
function defined in the open complex plane C. The maximum term zif (1)

and the maximum modulus My (r) of f = > a,2™ on |z| = r are defined
n=0
as g (r) = max (Jap| ™) and My (r) = max |f (z)| respectively. We use

|2|=r
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the standard notations and definitions in the theory of entire functions
which are available in [10]. In the sequel we use the following notation:

log[k] x = log (log[k_l] :1:) ,k=1,2,3,...and log[o] T =

If f is non-constant then My(r) is strictly increasing and continuous

and its inverse Mf_l(r) : (|f(0)],00) — (0,00) exists and is such that
lim M '(s) = co. Bernal [1] introduced the definition of relative order
S§—00

of f with respect to g, denoted by pgy (f) as follows:

pg (f) = inf{u>0:M;(r) < My(r*) for all » > rg (1) > 0}

, log Mg_le (r)
= limsup———.
r—00 lOg T

Similarly, one can define the relative lower order of f with respect to g
denoted by A4 (f) as follows:

log M1 M
Ny (F) = lim g &M M ().

r—00 log r

If we consider g(z) = expz, the above definition coincides with the
classical definition [9] of order ( lower order) of an entire function f
which is as follows:

Definition 1.1. The order py and the lower order Ay of an entire func-
tion f are defined as

log?l M log? M
py = lim supiOg f (r) and Ay = lim infiOg J (T)
r—oo log r r—00 log r

Using the inequalities pf (1) < My (1) < %,uf (R) for 0 <7 < R [§]
one may give an alternative definition of entire function in the following
manner:

logl2l log!2!
pf = lim supiOg s (r) and Ay = lim inf28 AL (r)
r—00 ogr T—00 log r
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Now let L = L (r) be a positive continuous function increasing slowly
i.e., L(ar) ~ L(r) as r — oo for every positive constant a. Singh and
Barker [5] defined it in the following way:

Definition 1.2. [5] A positive continuous function L (r) is called a
slowly changing function if for e (> 0),

1 L(kr)
ke = L(r)

<k forr>=r(e)

and uniformly for k(= 1).
If further, L (r) is differentiable, the above condition is equivalent to

L/
lim rL'(r)

=0.
5 L (1)

Somasundaram and Thamizharasi [6] introduced the notions of L-order
for entire function where L = L (r) is a positive continuous function
increasing slowly i.e., L (ar) ~ L (r) as r — oo for every positive constant
‘a’. The more generalised concept for L-order for entire function is L*-
order and its definition is as follows:

Definition 1.3. [6] The L*-order pJLc* and the L*-lower order /\]Lc* of an
entire function f are defined as

. logl? M
pJLc = lilrnsupiog J (r)

. logl? M
and \E = lim inf'28” M ()
r—00 log [T@L(T)]

r—oo log [reL(’”)] '

In view of the inequalities pf (1) < My (1) < R}Er'uf (R)for0 <r < R[]
one may verify that
. logl? 1 (1) . log® yuf (1)
F s 8 () e dog® gy (1)
pf = hlfiilgp Iog [reL(T)] and A\j = hggg)lf og [reL(T)] .

In the line of Somasundaram and Thamizharasi [6] and Bernal [1], Datta
and Biswas [2] gave the definition of relative L*-order of an entire func-
tion in the following way:
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Definition 1.4. [2] The relative L*-order of an entire function f with
respect to another entire function g , denoted by pg* (f) in the following
way

pe (f)

inf {,u >0: My (r) <M, {reL(T)}M for all r > rg(p) > 0}

gy ()
lgsogp log [rel ()]

Similarly, one can define the relative L*-lower order of f with respect to
g denoted by )\5* (f) as follows:

. log Mt M (r)
L S I g
Ay (f) = lim inf log [rel )]

In the case of relative L*-order (relative L*-lower order), it therefore
seems reasonable to define suitably an alternative definition of relative
L*-order (relative L*-lower order) of entire function in terms of its max-
imum terms. Datta, Biswas and Ali [4] also introduced such definition
in the following way:

Definition 1.5. [4] The relative order pg* (f) and the relative lower or-
der Xy (f) of an entire function f with respect to another entire function
g are defined as

log piy g ()

. . log puy ey (r)
I () = lmsup—2 e P g A2 (f) = liming M H1U)
py (f) m sup— Frez] and Ay (f) = limin log [reE™]

In this paper we wish to establish some results relating to the growth
rates of composite entire functions in terms of their maximum terms on
the basis of relative L*-order (relative L*-lower order).

2. Main Results

In the following we present some lemmas which will be needed in the
sequel.
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Lemma 2.1. [7] Let f and g be any two entire functions. Then for every
a>1and0<r <R,

« aR
< .
Ppog (1) < —— g <R — 1 (R)>

Lemma 2.2. [7] If f and g are any two entire functions with g (0) = 0.
Then for all sufficiently large values of r,

ugea) > gus (10 (5) = 9 01 )

Lemma 2.3. [3] If f be an entire and o > 1, 0 < 8 < «, then for all
sufficiently large r,
pug(or) = B (r).

Theorem 2.4. Let f, g and h be any three entire functions and g (0) =
0. If there exist a and (3, satisfying 0 < a <1, >0 and a(f+1) > 1,
such that

o Tog gt (pg(r)
(1) lliriijp (IOgT‘GL(T))a

1 —1
(i) Tim inf—28Hn (47 (Tﬁ)
r—00 (lOg Mh—l (T‘))

A, a real number > 0,

)
H = B, a real number > 0.

Then
p" (fog) = .

Proof. From (i), we have for a sequence of values of r tending to infinity

«

log 15" (119(r) > (A=) (logre"™)) (1)

and from (7i) , we obtain for all sufficiently large values of r that

log iy (117(r)) = (B — ) (log sy, * (r) .
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Since fi4 () is continuous, increasing and unbounded function of r, we
get from above for all sufficiently large values of r that

log 113 (1 (11 (r))) = (B — €) (log s (g (r))) " . 2)

Also ugl (r) is an increasing function of r, it follows from Lemma 2.2,
Lemma 2.3, ( 1) and (2) for a sequence of values of r tending to infinity

that
o o 9)
log 1, {uf (ug (1%) }

WV

lOg lelufog(r)

WV

~

i.e., log N}:l,ufog(r)

. _ _ T B+1
ettt > (8- (i o 55)
Y\ o A+

ire.y log i peg(r) > (B=2) [(4 =) (tog (155) 1)) |
. — _r OC(B+1)
o ot ) 3 (58 (4 - (s (1) 4

r r_ a(B+1)

log 1 pealr) (B =) (A=) [log (sfg) (5|
“ log [rel™)] 7 log [rel()
log 15, 1704 (r)

i.e., limsu
b log [rel(m]

.. (B=g)(A—g)ft! [log rek(r) 4 O(l)]a(ﬁﬂ)
> liminf .
r—00 log [reL(T)]

Since & (> 0) is arbitrary and « (G + 1) > 1, it follows from above that

pE" (fog) = oo,

which proves the theorem. [J

In the line of Theorem 2.4, one may state the following two theorems
without their proofs :
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Theorem 2.5. Let f, g and h be any three entire functions and g (0) =
0. If there exist o and 3, satisfying 0 < a <1, >0 and a(f+1) > 1,

such that

1
(7) lim inf—og iy (Ko (Ta) = A, a real number >0,
r—00 ( og reL )

1
(44) lim sup R g (ﬁl)l = B, a real number > 0.
r=oo (log ' (r))

Then
p (fog) =

Theorem 2.6. Let f, g and h be any three entire functions and g (0) =
0. If there exist o« and 3, satisfying 0 < a <1, >0 and a(f+1) > 1,
such that

log 1
(1) liminfoguh—w = A, a real number >0,
r—00 (log reL(’"))

1
(i) lim inf 08 iy (,uf(r)) = B, a real number > 0.
r—00 —1 B+1
(log 1y, (1))

Then
M (fog) =

Theorem 2.7. Let f, g and h be any three entire functions and g (0) =
0. If there exist o and 3, satisfying o > 1, 0 < B <1 and aff > 1, such

that

I
(1) 1imsup0guh—(ug(£)) = A, a real number > 0,
7—00 (10g[2] 7«)

IOgﬂhl(#f(T))]

log 1, ' (r)
i = B, a real number > 0.

x|
(74) liminf

T—00 [log ,U'];l (T)]ﬁ
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Then

pE" (fog) = .

Proof. From (i) , we have for a sequence of values of r tending to infinity
we get that

log 17" (1g(r)) > (4 = ) (log )" (3)

and from (ii), we obtain for all sufficiently large values of r that

log [WW] > (B-c¢)[logu;" (r)]”

log i, (r)
log i, (pg(r))

- B
log #;:1 (r) 2> exp [(B —e) [log ,uhl (r)] ] .

Since fiq4 () is continuous, increasing and unbounded function of r, we
get from above for all sufficiently large values of r that

log 117, (115 (g (1))
log 17, (g (1))

> exp (B - 2) log i, (s ()] (@)

Also y; ' (r) is increasing function of r, it follows from Lemma 2.2,
Lemma 2.3, (3) and (4) for a sequence of values of r tending to infinity
that
log 1y, ' 1yog(r) _ log iy, " {1y (55119 (5)) }
log [rel(m] - log [rel(r)] ’

log 1y, ' j1yog(r) _ 1og " {15 (1o (555)) }
log [reL] log [rel(r] ’

log 17, ' 1 fog (7)
log [rel(")]
log uy,* {r (g (36)) ) log " (kg (360))
log 1, (g (155)) log [rel ()]
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l0g 1, t1709(r)
log [rel(m]

o (42 (10g? ()"
s (-0 st (o ()] 2 )
10g 1, f0q(r)
log [rel(M]
oel? ()"
> oo o (wit ()] L i)

log 1, "f7o(r)
log [ret ()]
0ol? (1~
z o {(B_E)(A )ﬂ(log[2]<1oo>>aﬂllgm<1oo>] = ligo[ri’?(()]l ’

7 log [rel()]
o (g (Y| B (s ()™ (A o) (log™ ()
= (°g<1oo>> : tog [reZ0]
-1
.. lim sup 08 #n Freo(r)

r—oo  log [rel(n)]

a1 (A 2 (= ))*
r o\ (B—e)(A—e)? (10g2) (155))*° 7! (A —¢) (log (100))
2 hrrggolf (log (100)) . log [reL(r)] '

Since € (> 0) is arbitrary and a > 1, aff > 1, the theorem follows from

above. [
In the line of Theorem 2.7, one may also state the following two theorems

without their proofs :

Theorem 2.8. Let f, g and h be any three entire functions and g (0) =
0. If there exist a and 3, satisfying a > 1, 0 < B <1 and aff > 1, such
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that
loo 11
(7) liminfog#h—('ug(;n)) = A, a real number > 0,
e <10g[2] r)
log puj, (11 (1))
log[ log 1, " (r)
(i) lim sup 5 = B, a real number > 0.
oo flog ()]
Then

pr" (fog) = oc.

Theorem 2.9. Let f, g and h be any three entire functions and g (0) =
0. If there exist o and 3, satisfying o > 1, 0 < B <1 and aff > 1, such

that

1 —1
(1) liminfwh—wgg» = A, a real number >0,
e (logp] 7")

log [log wy (g () ]

log 17, " (r)

(i) lim inf = B, a real number > 0.

T flog g (1)

Then
Aﬁ (f og) = 00.

Theorem 2.10. Let f, g and h be any three entire functions such that
0< A" (9) < pE (9) < 00, g(0) =0 and

log 1=
lim supw = A, a real number < oco.
r—oo  logu, " (1)

Then

N (fog) AN (9) and py (fog) <A-py (9).
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Proof. Since u,:l (r) is an increasing function of r, it follows from

Lemma 2.2 for all sufficiently large values of r that

log 1y, " tog(r) _ log " {11y (11g (267))}
log [rel(")] = log [rel ()] ’

log 1, f1foq(r)
7 log [rel ()]

log 1y, " {7 (p1g (267))} log iy " (g (267))

5
log iy, ! (ug (267)) log [rel ()] 5)
log ;i fo
e, Timing 28 Hn Freg(r)
r—oo  log [reL(T)]
o log ! iy (g (267))} log ! (1 (267))
< liminf — . ,
7—00 log f1;,~ (g (267)) log [rel (]
log ;i fo
e, Timing 28 Hn Freg(r)
r—oo  log [reL(T)]
log i, ! 26 log 11, (pg (26
< limsup 2H Ellif (g (267))} . . dog iy, (ug 7‘))’
r—co  log (g (267)) r—co  log [rel(n)]
iew A (Fog) SA-A (9) - (6)
Also from (5), we obtain for all sufficiently large values of r that
log 13, i fo
limsup—og Hy_Ffoo(r)

r—o00 log [T‘GL(T)}

- -1
< limsup | 084 ' Ellif (1g (267))} log ;" (g (267))
r—00 log 1, (pg (261)) log [rel(7)]

log 17 1o
e, Timsup 28 Fn Freo(r)
r—o00 IOg [T@L(T)]

log ;! 26 log ;! 26
< limsup 28 H Eﬁf (1 ( T))}.hmsup og i, (pg (26r))
r—oo  log " (jg (267)) r—00 log [rel(r)]
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ie., p. (fog) < A-pf (9). (7)
Therefore the theorem follows from (6) and (7). O

Theorem 2.11. Let f, g and h be any three entire functions such that
0 <A (g9) < o0, g(0) =0 and

1 —1
i sup 228 (pp(r))

— = A, a real number < oco.
r—00 log,uh (’l“)

Then
pi (fog) =B Ay (9).

Proof. Since M}:l (r) is an increasing function of r, it follows from
Lemma 2.2 for all sufficiently large values of r that

log 13, pog () _ 10g 1y, {115 (1o (75)) }
log [rel(7)] - log [rel ()] ’

. logm, 1 fog (1)
7 log [rel ()]
log ' {s (g (360)) ) log iy, (1M (355))
ozt (M, () log [reh )]

log 17t fo
e., limsup—og'uh ol g(r)
r—00 log [TGL(T)}

log p1;, " {Mf (g (165))} log " (uMy (155))

> lims :
ey log 11, (M, g (165)) log [rel(m]
e., limsupW

> limsuploguh s (19 (0)) } -liminfl gy (1M (155))
r—00 log ,uh (,uM (%)) r—00 og [reL(T)] ’
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Thus the proof is complete. [

Theorem 2.12. Let f, g and h be any three entire functions such that
0< A" (9) < pF (9) < 00, g(0) =0 and

—1
liminf log puy,~ (g (r))

1 = B, a real number < oc.
r—oo loguy, ()

Then
A (fog)<B-pf (9).

Theorem 2.13. Let f, g and h be any three entire functions such that
0 < pk” (g) <00, g(0) =0 and

loo 1~
lim sup—og all _(ff(r»
r—00 loguh (’l“)
for a particular value of § > 0. Then

A, a real number < oo

Pt (fog)=A-pl (g).

The proof of Theorem 2.12 and Theorem 2.13 are omitted because those
can be carried out in the line of Theorem 2.10 and Theorem 2.11 respec-
tively.
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