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Abstract. The theory of integral equation is one of the major topics
of applied mathematics. The main purpose of this paper is to introduce
a numerical method based on the interpolation for approximating the
solution of the second kind linear Fredholm integral equation. In this
case, the divided differences method is applied. At last, two numerical
examples are presented to show the accuracy of the proposed method.
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1. Introduction

In recent years, the use of the Fredholm integral equation has increased
in many physical applications, e.g. potential theory and Dirichlet prob-
lems, electrostatic, mathematical problems of radiative equilibrium, the
particle transport problems of astrophysics and reactor theory, and ra-
diative heat problems. Some valid methods for solving Fredholm integral
equation have been developed such as quadrature methods, single-term
Walsh series method ([7]), Lagrange interpolation ([6]) mixed interpola-
tion collocation methods ([2]), Adomian’s decomposition method ([9,3]),
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radial basis function networks ([4]). Furthermore, Mechanical algorithm
methods ([8]) and approximate solution ([4]) for solving Fredholm in-
tegral equation had been developed. In this work, a new method is
proposed to estimate the solution of a Fredholm integral equation of
the second kind by using the divided differences method. The Fredholm
functional integral equation of the second kind is defined by,

F (x) = f(x) + λ

∫ b

a
k(x, t)F (t)dt, a 6 x 6 b (1)

where λ > 0 and k(x, t) is an arbitrary kernel function over the square
a 6 x, t 6 b. The rest of this essay is organized as follows. In Section
2, we present preliminaries. The proposed method is drawn in Section
3. The numerical examples and a comparison between the proposed
method and the Adomian’s decomposition method are given in Section
4. In Section 5, conclusion is discussed.

2. Preliminaries

Definition 2.1. The interpolating polynomial Fn(x), interpolating at
the n + 1 distinct points x0, x1, ...xn can be written as,

Fn(x) = a0+a1(x−x0)+a2(x−x0)(x−x1)+ ...+an(x−x0)...(x−xn−1),
(2)

and by Substituting, successive x0, x1, ..., xn, we have,

a0 = f [x0], a1 = f [x0, x1], ..., an = f [x0, x1, ..., xn],

where

f [x0] = f(x0), f [x0, x1 ] =
f(x1)− f(x0)

x1 − x0
, ..., f [x0, ..., xn]

=
f [x1, ..., xn]− f [x0, ..., xn−1]

xn − x0
.
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Definition 2.2. The n× n linear system





a11x1 + a12x2 + · · · + a1nxn = y1,
a21x1 + a22x2 + · · · + a2nxn = y2,
...

...
...

...
an1x1 + an2x2 + · · · + annxn = yn,

(3)

where the given matrix of coefficients A = (aij), 1 6 i, j 6 n, the un-
known vector X = (x1, ..., xn)T and the right hand side vector Y =
(y1, ..., yn)T all of them are real.

3. The Proposed Method

In this paper, we give a numerical method to compute numerical solu-
tions of Fredholm integral equations by using divided differences inter-
polation. For this purpose, we approximate F (x) and

∫ b
a k(x, t)F (t)dt

with Fn(x) and
∫ b
a k(x, t)Fn(t)dt, respectively, as follow:

Fn(x) = F (x0) +
n−1∑

j=0

F [x0, ..., xj+1](x− x0)...(x− xj), (4)

and

∫ b

a
k(x, t)Fn(t)dt = (b− a)k(x, x0)F [x0] +

n−1∑

j=0

k(x, xj+1)F [x0, ...xj+1]hj ,

(5)
where

hj =
∫ b

a
(x− x0)...(x− xj)dx, (6)

By Substituting (5) and (6) in (1), we get the following system of equa-
tions.

F [x0]+
n−1∑

j=0

F [x0, ..., xj+1](x−x0)...(x−xj) = f(xj)+λ((b−a)k(x, x0)F [x0]
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+
n−1∑

j=0

k(x, xj+1)F [x0, ...xj+1]hj). (7)

By replacing x with xi for i = 0, ..., n, the (n+1)(n+1) equation system
is obtained where by solving these system equation, F [x0], ..., F [x0...xn]
are found. We also obtain Fn(x) which is the interpolation polynomial
for F (x). Then the iterative procedure

Fn,0(x) = Fn(x),

Fn,k+1(x) = f(x) + λ

∫ b

a
k(x, t)Fn,k(t)dt

converges to the unique solution of Eq(1) ([10]).
In the following, the distance between approximate and exact solution
are as follow:

D(F (x), Fn,k(x)) = |F (x)− Fn,k(x)|.

where Fn,k(x) approximated from F (x).

4. Examples of Linear Fredholm Integral Equa-
tions

Example 1. Consider the following Fredholm integral equation

F (x) = 2 sin(
x

2
) + 0.1

∫ 2π

0
sin(t) sin(

x

2
)F (t)dt,

The exact solution in this case is given by:

F (x) = 2 sin(
x

2
).
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Figure 1. Comparison between approximate solutions with n=2 by 0, 2
iteration and the exact solution

Example 2. ([1]) Consider the following Fredholm integral equation .

F (x) = e3x − 1
9
(2e3 + 1)x +

∫ 1

0
xtF (t)dt, 0 6 x 6 1

with the exact solution :
F (x) = e3x.

where the results are shown in figure 2 and Table 1 and 2.
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Figure 2. comparison between approximate solutions with n=3 by 0 ,10
iteration and the exact solution
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Table 1. The distance of the exact solution and approximate solution of the
proposed method for n=3 by 0,5,10,15 and 20 iterations.

x D(F, F3,0iter) D(F, F3,5iter) D(F, F3,10iter) D(F, F3,15iter) D(F, F3,20iter)
0.0 0.000 0.000 0.000 0.000 0.000
0.1 4.444× 10−1 8.65× 10−5 3.560× 10−7 1.600× 10−9 2.000× 10−10

0.2 5.594× 10−1 1.730× 10−4 7.120× 10−7 3.200× 10−9 4.000× 10−10

0.3 4.664× 10−1 2.595× 10−4 1.068× 10−6 4.800× 10−9 6.000× 10−10

0.4 2.714× 10−1 3.459× 10−4 1.424× 10−6 6.400× 10−9 8.000× 10−10

0.5 6.030× 10−2 4.324× 10−4 1.781× 10−6 8.000× 10−9 1.000× 10−9

0.6 1.081× 10−1 5.189× 10−4 2.137× 10−6 9.600× 10−9 1.200× 10−9

0.7 2.121× 10−1 6.054× 10−4 2.493× 10−6 1.120× 10−8 1.400× 10−9

0.8 2.795× 10−1 6.919× 10−4 2.849× 10−6 1.280× 10−8 1.600× 10−9

0.9 4.056× 10−1 7.784× 10−4 3.205× 10−6 1.440× 10−8 1.800× 10−9

1.0 7.760× 10−1 8.648× 10−4 3.561× 10−6 1.600× 10−8 2.000× 10−9

Table 2. The distance between the exact solution and approximate solution of
the Adomian’s decomposition method for n=3 by 0,5,10,15 and 20 iterations.

x D(F, F3,0iter) D(F, F3,5iter) D(F, F3,10iter) D(F, F3,15iter) D(F, F3,20iter)
0.0 0.000 0.000 0.000 0.000 0.000
0.1 4.575× 10−1 1.9× 10−3 7.75× 10−6 3.21× 10−8 3.22× 10−10

0.2 9.149× 10−1 3.8× 10−3 1.549× 10−5 6.41× 10−8 6.43× 10−10

0.3 1.3724 5.6× 10−3 2.324× 10−5 9.62× 10−8 9.65× 10−10

0.4 1.8298 7.5× 10−3 3.099× 10−5 1.283× 10−7 1.287× 10−9

0.5 2.2873 9.4× 10−3 3.874× 10−5 1.604× 10−7 1.609× 10−9

0.6 2.7447 1.13× 10−2 4.648× 10−5 1.924× 10−7 1.930× 10−9

0.7 3.2022 1.32× 10−2 5.423× 10−5 2.245× 10−7 2.252× 10−9

0.8 3.6597 1.51× 10−2 6.198× 10−5 2.566× 10−7 2.574× 10−9

0.9 4.1171 1.69× 10−2 6.973× 10−5 2.886× 10−7 2.896× 10−9

1.0 4.5746 1.88× 10−2 7.747× 10−5 3.207× 10−7 3.217× 10−9

Example 3. ([4]) Consider the integral equation

F (x) +
1
3

∫ 1

0
e2x− 5t

3 F (t)dt = e2x+ 1
3 , 0 6 x 6 1

with the exact solution Fe(x) = e2x. The numerical results are shown
in Table 3.



NUMERICAL SOLUTION OF THE LINEAR ... 37

Table 3. The distance between the exact solution and the approximate
solution of radial basic function (RBF) networks and the proposed methods

for n=5 by 10 iterations.

x D(F, FRBF ) D(F, F5,10iter)
0.0 5.40631× 10−7 6.06× 10−6

0.1 4.17207× 10−7 7.4× 10−6

0.2 1.62255× 10−7 9.04× 10−6

0.3 9.97279× 10−8 1.104× 10−5

0.4 5.33277× 10−7 1.349× 10−5

0.5 2.5.12821× 10−7 1.647× 10−5

0.6 8.86581× 10−8 2.012× 10−5

0.7 3.82386× 10−7 2.458× 10−5

0.8 6.76977× 10−7 3.002× 10−5

0.9 3.36868× 10−7 3.666× 10−5

1.0 5.00635× 10−7 4.478× 10−5

However, in Table 3 the numerical results showed that the RBF mehtod
in comparison with the proposed method has more accuracy, but in
RBF method, non-linear minimization problem is resulted that must be
solved. Solving this kind of problems is not easy.

Example 4. ([5]) We consider a Fredholm integral of the second kind
given by

F (x)−
∫ 1

−1
(xt + x2t2)F (t)dt = 1, − 1 6 x 6 1

having the exact solution as follows:

F (x) = 1 +
10
9

x2.

The numerical results are shown in Table 4.

Table 4. The distance between the exact solution and the approximate
solution of Bernstein polynomials (BP) and the proposed methods (PM) for

n=3 by 35 iterations.

x 0.0 ±0.2 ±0.4 ±0.6 ±0.8
F(x)(exact) 1.00000 1.04444 1.17777 1.40000 1.71111
F(x)(BP) 0.99999 1.04444 1.17777 1.40000 1.71111
F(x)(PM) 1.00000 1.04444 1.17777 1.40000 1.71111
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5. Conclusion

In this paper, the divided differences method is applied to solve the
linear Fredholm integral equation of the second kind. In this method,
the coefficients of divided differences are given by solving a system of
equations. In the comparison, the proposed method is better than the
Adomian’s decomposition method to approximate the exact solution.
The advantage of the proposed method over other methods is that the
integral equation is solved by having support points of the solution of
integral equation.
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