Reflexivity on Banach Spaces of Analytic Functions

B. Yousefi and J. Doroodgar
Islamic Azad University-Shiraz Branch

“Dedicated to Mola Ali”

Abstract. Let \mathcal{X} be a Banach space of functions analytic on a plane domain Ω such that for every λ in Ω the functional of evaluation at λ is bounded. Assume further that \mathcal{X} contains the constants and admits multiplication by the independent variable z, M_z, as a bounded operator. We give sufficient conditions for M_z to be reflexive.

AMS Subject Classification: 47B37; 46A25.
Keywords and Phrases: Banach spaces of analytic functions, multiplication operators, reflexive operator, multipliers, Caratheodory hull, bounded point evaluation.

1. Introduction

Let \mathcal{X} be a separable reflexive Banach space whose elements are analytic functions on a complex domain Ω. It is convenient and helpful to introduce the notation $\langle x, x^* \rangle$ to stand for $x^*(x)$, for $x \in \mathcal{X}$ and $x^* \in \mathcal{X}^*$. Assume $1 \in \mathcal{X}$ and the operator M_z of multiplication by z maps \mathcal{X} into

87
itself and for each \(\lambda \) in \(\Omega \), the functional \(e(\lambda) : \mathcal{X} \to C \) of evaluation at \(\lambda \) given by

\[
e(\lambda)(f) = \langle f, e(\lambda) \rangle = f(\lambda).
\]

is bounded.

For the algebra \(\mathcal{B}(\mathcal{X}) \) of all bounded operators on a Banach space \(\mathcal{X} \), the weak operator topology is the one in which a net \(A_\alpha \) converges to \(A \) if \(A_\alpha x \to Ax \) weakly, \(x \in \mathcal{X} \) ([7]).

A complex valued function \(\varphi \) on \(\Omega \) for which \(\varphi f \in \mathcal{X} \) for every \(f \in \mathcal{X} \) is called a multiplier of \(\mathcal{X} \) and the collection of all these multipliers is denoted by \(\mathcal{M}(\mathcal{X}) \). Because \(M_\varphi \) is a bounded operator on \(\mathcal{X} \), the adjoint \(M_\varphi^* : \mathcal{X}^* \to \mathcal{X}^* \) satisfies

\[
M_\varphi^* e(\lambda) = \lambda e(\lambda).
\]

In general each multiplier \(\varphi \) of \(\mathcal{X} \) determines a multiplication operator \(M_\varphi \) defined by \(M_\varphi f = \varphi f, f \in \mathcal{X} \). Also

\[
M_\varphi^* e(\lambda) = \varphi(\lambda) e(\lambda).
\]

It is well-known that each multiplier is a bounded analytic function. Indeed \(|\varphi(\lambda)| \leq ||M_\varphi|| \) for each \(\lambda \) in \(\Omega \). Also \(M_\varphi 1 = \varphi \in \mathcal{X} \). But \(\mathcal{X} \subset H(\Omega) \), thus \(\varphi \) is a bounded analytic function.

Recall that if \(A \in \mathcal{B}(\mathcal{X}) \), then \(\text{Lat}(A) \) is by definition the lattice of all invariant subspaces of \(A \), and \(\text{AlgLat}(A) \) is the algebra of all operators
B in $\mathcal{B}(X)$ such that $\text{Lat}(A) \subseteq \text{Lat}(B)$. An operator A in $\mathcal{B}(X)$ is said to be reflexive if $\text{AlgLat}(A) = W(A)$, where $W(A)$ is the smallest subalgebra of $\mathcal{B}(X)$ that contains A and the identity I and is closed in the weak operator topology.

For G an open connected (not necessarily simply connected) subset of the complex plane and α an ordinal number, the set G_α is defined as in Sarason [4, p.525]. Here we only remember the definition of the Caratheodory hull. By a domain we understand a connected open subset of the plane. If B is a bounded domain in the plane, then the Caratheodory hull (or C-hull) of B is the complement of the closure of the unbounded component of the complement of the closure of B. The C-hull of B is denoted by B^*. Intuitively, B^* can be described as the interior of the outer boundary of B, and in analytic terms it can be defined as the interior of the set of all points z_0 in the plane such that

$$|p(z_0)| \leq \sup\{|p(z)| : z \in B\},$$

for all polynomials p. The components of B^* are simply connected; in fact, one can easily see that each of these components has a connected complement. The component of B^* that contains B is denoted by B_1. Note that for all polynomials p, $\|p\|_B = \|p\|_{B_1}$.
2. Main Result

The operator M_z has been the focus of attention for several decades and many of its properties have been studied (e.g. [1],[6]). In this article we would like to give some sufficient conditions so that the operator M_z becomes reflexive (for a good source of reflexivity see [3]). This is a continuation of our work [5] where we only considered finitely connected domains, but here we work with arbitrary domains.

Theorem. Let X be a separable reflexive Banach space whose elements are analytic functions on a complex domain Ω, each point of which is a bounded point evaluation. Suppose that X contains the constant functions and $z \in \mathcal{M}(X)$. If $\{e(\lambda) : \lambda \in \Omega\}$ is norm bounded and $H^\infty(\Omega_1) \subset \mathcal{M}(X)$, then M_z is reflexive.

Proof. Let $X \in \text{AlgLat}(M_z)$. By an argument similar to the proof of Lemma 3.1 in [5] we can show that $X = M_\varphi$ for some multiplier φ.

Now we show that $L : H^\infty(\Omega_1) \to B(X)$ be given by $L(\varphi) = M_\varphi$ is continuous. Suppose that the sequence $\{\varphi_n\}_n$ converges to φ in $H^\infty(\Omega_1)$ and $L(\varphi_n) = M_{\varphi_n}$ converges to A in $B(X)$. Then for each f in X,

$$Af = \lim_n M_{\varphi_n}f = \lim_n \varphi_nf,$$

and so $\{\varphi_nf\}_n$ is convergent in X. Note that by the continuity of point evaluations φ_nf converges pointwise to φf. Thus Af is analytic on Ω.

and agree with φf on Ω. Hence $A = M_\varphi$ and so L is continuous. This implies that there is a constant $c_1 > 0$ such that

$$\|M_\varphi\| \leq c_1 \|\varphi\|_{\Omega_1},$$

for all φ in $H^\infty(\Omega_1)$.

Now put $\mathcal{N} = H^\infty(\Omega_1)$. Then $\mathcal{N} \neq \emptyset$, since $1 \in \mathcal{N}$. It is a closed subspace of X, since if $\{f_n\} \subset \mathcal{N}$ and $f_n \to f$ in X, then for all n, $\|f_n\|_X \leq c_2$ for some $c_2 > 0$. Because point evaluations are bounded, for all λ in Ω we have

$$f_n(\lambda) = \langle f_n, e(\lambda) \rangle \to \langle f, e(\lambda) \rangle = f(\lambda).$$

Also for all λ in Ω,

$$|f_n(\lambda)| = |\langle f_n, e(\lambda) \rangle| \leq \|f_n\|_X \|e(\lambda)\| \leq c_3 \|f_n\|_X,$$

where $c_3 = \sup_{\lambda \in \Omega} \|e(\lambda)\|$. Thus

$$\|f_n\|_{\Omega_1} \leq c_3 \|f_n\|_X \leq c_2 c_3,$$

for all n. Since $f_n \in H^\infty(\Omega_1)$, $\|f_n\|_{\Omega_1} = \|f_n\|_{\Omega}$ and so $\|f_n\|_{\Omega_1} \leq c_2 c_3$ for all n. This implies that $\{f_n\}$ is a normal family in $H^\infty(\Omega_1)$ and by passing to a subsequence if necessary, we may suppose that for some function g, $f_n \to g$ uniformly on compact subsets of Ω_1. Thus $g \in H^\infty(\Omega_1)$. But by pointwise convergence, $f = g$ on Ω. Then f can be extended to a bounded analytic function on Ω_1, i.e., $f \in H^\infty(\Omega_1)$ and
so \(\mathcal{N} \) is indeed a closed subspace of \(\mathcal{X} \). Now clearly \(\mathcal{N} \in \text{Lat}(M_x) \), thus \(X\mathcal{N} \subset \mathcal{N} \). Since \(1 \in \mathcal{N} \) we get \(X1 = \varphi \in \mathcal{N} = H^\infty(\Omega_1) \). But \(\Omega_1 \) is a Caratheodory domain and so by the Farrell-Rubel-Shields Theorem [2, Theorem 5.1, p.151] there is a sequence \(\{p_n\}_n \) of polynomials converging to \(\varphi \) such that for all \(n \), \(\|p_n\|_{\Omega_1} \leq c_4 \) for some \(c_4 > 0 \). So we obtain

\[
\|M_{p_n}\| \leq c_1\|p_n\|_{\Omega_1} \leq c_1c_4,
\]

for all \(n \). Since \(\mathcal{X} \) is reflexive, the unit ball of \(\mathcal{X} \) is weakly compact.

Therefore ball \(B(\mathcal{X}) \) is compact in the weak operator topology and so by passing to a subsequence if necessary, we may assume that for some \(A \in B(\mathcal{X}) \), \(M_{p_n} \longrightarrow A \) in the weak operator topology. Using the fact that \(M_{p_n}^* \longrightarrow A^* \) in the weak operator topology and by acting these operators on \(e(\lambda) \) we obtain that

\[
p_n(\lambda)e(\lambda) = M_{p_n}^*e(\lambda) \longrightarrow A^*e(\lambda),
\]

weakly. Since \(p_n(\lambda) \longrightarrow \varphi(\lambda) \) we see that

\[
A^*e(\lambda) = \varphi(\lambda)e(\lambda).
\]

Because the closed linear span of \(\{e(\lambda) : \lambda \in \Omega\} \) is weak star dense in \(\mathcal{X}^* \), we conclude that \(A = M_\varphi = X \). This implies that \(X \in W(M_z) \) and so \(M_z \) is reflexive. This completes the proof. \(\square \)
References

Bahmann Yousefi
Department of Mathematics
Islamic Azad University-Shiraz Branch
Shiraz, Iran
E-mail: bahmann@spmu.ac.ir

Jinalo Doroodgar
Department of Mathematics
Islamic Azad University-Shiraz Branch
Shiraz, Iran
E-mail: Jinalollo-dorodgar@yahoo.com