C*-Algebra of Cancellative Semigroupoids

B. Tabatabaie

Shiraz University

Abstract. In this paper the definition and some properties of semigroupoids are considered. Representations, tight representations, and universal representations of a cancellative semigroupoid are discussed. Also, the C*-algebra of a semigroupoid is introduced and it is shown that source elements transfer to zero by tight representations.

AMS Subject Classification: 46L05
Keywords and Phrases: C*-algebra, projection, partial isometry, graph theory and representation.

1. Introduction

Because of the immensity of the class of all C*-algebras it has become important to identify and study special types of C*-algebras. The theory of C*-crossed products by group actions, specially group C*-algebras, C*(G), and reduced group C*-algebras, C*_r(G), are very well developed. In 1982, J. R. Wordingham proved that the left regular representation of ℓ¹(S) on ℓ²(S) is faithful ([11]). Following Wordingham, C*-algebras of an inverse semigroup, has been investigated by Duncan and Paterson as a generalization of crossed product of discrete groups ([2, 3, 8]).
The notion of partial crossed product of a C^*-algebra by a discrete group is introduced by R. Exel ([4]) and generalized by McClanahan ([7]). Nándor Sieben in his master thesis, at the Arizona State University, under the supervision of J. Quigg defined the C^*-crossed product by action of an inverse semigroup and published the results in ([9]).

Partial actions of groups and actions of inverse semigroups have been studied by R. Exel in ([5]), where an inverse semigroup, $S(G)$, is associated to a given group G. R. Exel in ([5]) proved that there is a one-to-one correspondence between actions of $S(G)$ and partial actions of G. Also, he introduced a “partial” version of the group C^*-algebra, that is, partial group C^*-algebra, $C^*_p(G)$. Partial inverse semigroup C^*-algebra is introduced in ([10]). Now, following ([6]) we will consider the C^*-algebra of a cancellative semigroupoid.

The organization of this paper is as follows:

Semigroupoids and its properties are considered in Section 2. Section 3 is devoted to the representations, tight representations, universal representations, the C^*-algebra of a cancellative semigroupoid; and it is shown that source elements transfer to zero by tight representation.

2. Semigroupoids

In this section the concepts of semigroupoid, cancellative semigroupoid, divisibility, and source element of a semigroupoid are introduced. An
equivalence relation is defined on a special subset of a given semigroupoid. Also, it is shown that the disjoint union of the quotient space of this equivalence relation with the given semigroupoid is a new semigroupoid which has no source.

Let \(G \) be a non-empty set and \(G^{(2)} \) be a special subset of \(G \times G \), that is, \(G^{(2)} \) is the set of all ordered pairs on which a kind of multiplication is meaningful. With this in mind we have the following definition.

Definition 2.1. By a semigroupoid \(G \) we shall mean a triple \((G, G^{(2)}, .) \) such that

\[
. : G^{(2)} \rightarrow G
\]

is an associative binary operation in the following sense:

For given \(x, y, z \in G \) if either

(i) \((x, y) \in G^{(2)} \) and \((y, z) \in G^{(2)}, or\)
(ii) \((x, y) \in G^{(2)} \) and \((xy, z) \in G^{(2)}, or\)
(iii) \((y, z) \in G^{(2)} \) and \((x, yz) \in G^{(2)},

then all of \((x, y), (y, z), (xy, z)\) and \((x, yz)\) are in \(G^{(2)} \) and \(x(yz) = (xy)z \).

Example 2.2. Let \(E = (E^1, E^0, r, s) \) be a graph. Then the path space of \(E, F^+(E) \), consists of all finite paths including the vertices, is a semigroupoid with a product \(xy \) if \(s(x) = r(y) \). In particular, \(x = xs(x) = r(x)x \).

Before we give the definition of divisibility we need to know that:
If a semigroupoid, say G, has not a unit element it is possible to add a unit element to it. That is, to pick some element from the universe of outside of G, call it 1, and set $\tilde{G} = G \cup \{1\}$. Obviously, $1x = x1 = x$ for every x in G.

It should be noted that \tilde{G} may not be a semigroupoid. Because if it is a semigroupoid, since for given x, y in \tilde{G} the products $x1$ and $1y$ are meaningful we have $(x, 1)$ and $(1, y)$ are elements of $G^{(2)}$. By the Definition 2.1 we conclude that $xy = (x1)y$ is a meaningful product and we know that it is not always the case.

For given x in \tilde{G}, we would like to determine the set of all elements of G, say y, for which xy is meaningful. Therefore we have

$$G^x = \{y \in G : (x, y) \in G^{(2)}\} \quad \text{and} \quad G^1 = G.$$

Definition 2.3. Let \tilde{G} be a unital semigroupoid and $x, y \in G$. We shall say that x divides y or y is a multiple of x, in symbols $x \mid y$, if there exists z in \tilde{G} such that $(x, z) \in G^{(2)}$ and $y = xz$.

Lemma 2.4. The divisibility relation is reflexive, transitive, and invariant under multiplication on the left.

Proof. Let $x \in G$. Since $1x = x1 = x$, we see that the relation is reflexive. To prove the transitivity, if x, y, z are in G such that $x \mid y$ and $y \mid z$ we should show that $x \mid z$. If $x = y$ from $y \mid z$ we conclude that $x \mid z$.

Similarly if $y = z$, the relation $x|y$ shows that $x|z$. Otherwise from $x|y$ we have a u in G such that $(x, u) \in G^{(2)}$ and $y = xu$. Also, by $y|z$ we conclude that there exists v in G such that $(y, v) \in G^{(2)}$ and $z = yv$. Since $(x, u), (y, v) \in G^{(2)}$, that is $(x, u), (xu, v) \in G^{(2)}$ we see that $(u, v) \in G^{(2)}$. Consequently, $z = yv = (xu)v = x(uy)$. This shows that $x|z$.

To prove the last part of the lemma, let $x, y, k \in G, x|y, (k, x) \in G^{(2)}$ and $(k, y) \in G^{(2)}$. We should show that ky is a multiple of kx. From $x|y$ we conclude that there exists u in G such that $(x, u) \in G^{(2)}$ and $xu = y$. Since (k, x) and (x, u) are elements of $G^{(2)}$ we see that $(kx, u) \in G^{(2)}$ and $(k, y) = (k, xu) \in G^{(2)}$. As a consequence we have $(kx)u = k(xu) = ky$, that is, $kx|ky$. This completes the proof. □

The following important concept is pivotal in our work.

Definition 2.5. We shall say that an element $x \in G$ is cancellative if for every $y, z \in G$ the equation $xy = xz$ implies $y = z$. If every element of G is cancellative, then G is called a cancellative semigroupoid.

Some elements of G has special properties, that is, given $x \in G$, there exists $y \in G$ such that xy is not a legal multiplicative. Here, we would like to introduce the set of all such elements.

Definition 2.6. An element x of G is called source if $G^x = \emptyset$.

If $G^x \neq \emptyset$, then it is called the multiplicative set of x.

Here, we make an attempt to introduce a semigroupoid without sources.

Theorem 2.7. If G is a semigroupoid which has sources, then there exists a semigroupoid which has no source and contains G.

Proof. Let $G^0 = \{ x \in G : x \text{ is a source} \}$. Also, let

$$\psi : G \rightarrow G$$

defined by $\psi(x) = e'_x$ be a one-to-one map, and $E' = \psi(G)$. For any source y and any x such that $y \in G^x$, we observe that if $t \in G^y$, that is, $(y, t) \in G^{(2)}$ then $(xy, t) \in G^{(2)}$. This shows that $G^x \subseteq G^{xy}$. On the other hand if $s \in G^{xy}$, that is, $(xy, s) \in G^{(2)}$ then $(y, s) \in G^{(2)}$. So, $s \in G^y$ and $G^{xy} \subseteq G^y$. Consequently $G^y = G^{xy}$, and we conclude that xy is also a source.

Let “∼” be any equivalence relation on E' such that $e'_{xy} \sim e'_y$ for any source y and any x for which $y \in G^x$. Also, let $e_x = [e'_x] = \{ t \in E' : x \sim t \}$, and the quotient space, E'/\sim, be denoted by E. Take $\Gamma = G \cup E$,

$$\Gamma^{(2)} = G^{(2)} \cup \{(y, e_y) : y \in G^0\} \cup \{(e_y, e_y) : y \in G^0\},$$

define the multiplication

$$\cdot : \Gamma^{(2)} \rightarrow \Gamma$$

which is nothing but the multiplication on G when restricted to $G^{(2)}$, with

$$y.e_y = e_y, \quad e_y.e_y = e_y \quad \forall y \in G^0.$$
Now we can prove that $(\Gamma, \Gamma^{(2)}, \cdot)$ is a semigroupoid which contains G and has no source. To show this, let $r, s, t \in \Gamma$. If $r, s, t \in G$ it is finished, otherwise $r = e_x$, $s = e_y$ and $t = e_z$ for some $x, y, z \in G^0$.

Case 1. If $e_x = y$ and $e_z = e_y$, then

$$(r, s) = (e_x, e_y) = (y, e_y) \in \Gamma^{(2)}, \text{ and } (s, t) = (e_y, e_z) = (e_y, e_y) \in \Gamma^{(2)}.$$

That is, (r, s) and $(s, t) \in \Gamma^{(2)}$ and by Definition 2.1 part (i) we conclude that Γ is a semigroupoid.

Proofs of other cases are similar to the proof of case 1 and is left to the reader. □

3. Representations of Semigroupoids

In this section the notion of representation of a semigroupoid is introduced. Also, a universal C^*-algebra is associated to a cancellative semigroupoid. The concept of a **tight representation** and the fact that a source element transfers to the zero operator by a tight representation are discussed.

Throughout this section, G is a semigroupoid and A is a unital C^*-algebra.

Definition 3.1. Let $x, y \in G$. We shall say that x and y intersect if they have a common multiple, that is, if there exists an element m of G such that $x|m$ and $y|m$. The fact that x and y are intersect is denoted by $x \cap y$. Otherwise we will say that x and y are disjoint and is denoted
by \(x \perp y \).

The next concept is crucial in understanding the definition of a tight representation.

Definition 3.2. If \(X \) is any subset of \(G \) and \(Z \subseteq X \), then \(Z \) is called a covering of \(X \) if for every \(x \in X \), there exists \(h \in Z \) such that \(x \) and \(h \) are intersect.

The next definition is the first step in bridging semigroupoids and operator algebras.

Definition 3.3. By a representation of \(G \) in \(A \) we mean a mapping

\[\Pi : G \rightarrow A \]

such that \(\Pi(x) = \Pi_x \) is a partial isometry and if \(x, y \in G \) then

\[\Pi_x \Pi_y = \begin{cases}
\Pi_{xy}, & \text{if } (x, y) \in G^{(2)}, \\
0, & \text{otherwise}.
\end{cases} \]

Moreover the initial projections \(Q_x = \Pi_x^* \Pi_x \), and the final projections \(P_y = \Pi_y \Pi_y^* \) should commute among themselves and satisfy to the following conditions:

(i) \(P_x P_y = 0 \), if \(x \perp y \);

(ii) \(Q_x P_y = P_y \), if \((x, y) \in G^{(2)} \);

(iii) \(Q_x P_y = 0 \), if \((x, y) \notin G^{(2)} \).

It should be noted that any representation extends to \(\tilde{G} \) by taking \(\Pi(1) = \Pi_1 = 1 \) and \(Q_1 = P_1 = 1 \).
Here we are able to present the reason why we choose cancellative semigroupoid.

If G is not a cancellative semigroupoid, that is, there exists x in G such that for a distinct pair of elements $y, z \in G$ we have $xy = xz$. For given representation Π, since Πx is a partial isometry we have

$$\Pi_y = \Pi_y \Pi_y^* \Pi_y = (\Pi_y \Pi_y^*) \Pi_y = P_y \Pi_y = Q_x P_y \Pi_y$$

$$= \Pi_x^* \Pi_x \Pi_y \Pi_y^* \Pi_y = \Pi_x^* \Pi_x \Pi_y = \Pi_x^* (\Pi_x \Pi_y) = \Pi_x^* \Pi_{xy}.$$

And,

$$\Pi_z = \Pi_z \Pi_z^* \Pi_z = (\Pi_z \Pi_z^*) \Pi_z = P_x \Pi_z =$$

$$= Q_x \Pi_z = \Pi_x^* \Pi_x \Pi_z \Pi_x^* \Pi_z = \Pi_x^* \Pi_x \Pi_z = \Pi_x^* (\Pi_x \Pi_z) = \Pi_x^* \Pi_{xz}.$$

Since $xz = xy$ we have $\Pi_{xy} = \Pi_{xz}$, that is $\Pi_y = \Pi_z$ whereas $y \neq z$. This shows that if G is not a cancellative semigroupoid, then we may have $\Pi(y) = \Pi(x)$ for some x, y such that $x \neq y$.

Before we present the definition of a *tight* representation we need to know some more about representations.

For given $x \in G$ and $z \in G^z$, since $(x, z) \in G^{(2)}$ we know that the initial projection, $Q_x = \Pi_x^* \Pi_x$, and the final projection, $P_z = \Pi_z \Pi_z^*$, commute and $Q_x P_z = P_z$. Also, we know that $Q_x P_z = P_z$ is equivalent to $P_z \leq Q_x$. So, if $z_1, z_2 \in G^z$ we have $P_{z_1} \leq Q_x$ and $P_{z_2} \leq Q_x$.

Consequently $P_{z_1} \lor P_{z_2} \leq Q_x$, and if H is a finite subset of G^x we have

$$\bigvee_{z \in H} P_z \leq Q_x.$$

If $y \in \tilde{G}$ and $z \in G - G^y$ then $(y, z) \notin G^{(2)}$, hence $Q_y P_z = P_z Q_y = 0$.

Therefore, from $P_z = P_z$ we have $P_z = P_z - P_z Q_y = P_z (1 - Q_y)$ which is equivalent to $P_z \leq 1 - Q_y$. Since z is an arbitrary element of $G - G^y$ we conclude that if H is a finite subset of $G - G^y$, then we have

$$\bigvee_{z \in H} P_z \leq 1 - Q_y$$

Now for given finite subsets X, Y of G, let

$$G^{X,Y} = \left(\bigcap_{x \in X} G^x \right) \cap \left(\bigcap_{y \in Y} G - G^y \right).$$

If $z \in G^{X,Y}$, then from $z \in \bigcap_{x \in X} G^x$ we conclude that $P_z \leq Q_x$ for all $x \in X$ and as a consequence

$$P_z \leq \prod_{x \in X} Q_x. \quad (1)$$

Also, from $z \in \bigcap_{y \in Y} G - G^y$ we have $P_z \leq 1 - Q_y$ for all $y \in Y$, and consequently

$$P_z \leq \prod_{y \in Y} (1 - Q_y). \quad (2)$$

From (1) and (2), for given $z \in G^{X,Y}$ we have

$$P_z \leq \prod_{x \in X} Q_x \prod_{y \in Y} (1 - Q_y).$$
Also, for given finite subset H of $G^{X,Y}$, we conclude that

$$\bigvee_{z \in H} P_z \leq \prod_{x \in X} Q_x \prod_{y \in Y} (1 - Q_y).$$

With this in mind we can present the following important definition.

Definition 3.4. A representation Π of G in A is said to be tight if for every subsets X, Y of \tilde{G} and every covering H of $G^{X,Y}$ the following equality holds

$$\bigvee_{z \in H} P_z = \prod_{x \in X} Q_x \prod_{y \in Y} (1 - Q_y).$$

It should be noted that if no such covering exists, then any representation is tight vacuously.

Before we present the definition of the C^*-algebra of a semigroupoid we need to introduce the concept of a universal C^*-algebra.

In recent years, universal constructions play a crucial role in the theory of operator algebras, specially in the theory of C^*-algebras. In other words, many important C^*-algebras can be expressed as universal C^*-algebras generated by a given set and a set of relations which satisfy in certain conditions. In what follows we will describe that, what do we mean by a universal C^*-algebra generated by a set and a set of relations.

Suppose a set $B = \{b_i : i \in \Omega\}$ of generators and a set R of relations are given. It should be noted that the relations can be of a very general
nature. Usually, some algebraic relations between generators and their adjoints exist. The only restriction on the relation is that:

(i) they must be realizable among operators on a Hilbert space.

(ii) each generator should have an upper bound when realized as an operator.

A representation of \((B|R)\) is a set \(\{T_i : i \in \Omega\}\) of bounded operators on a Hilbert space \(H\) which satisfying in the given relations. Each such representation of \((B|R)\) defines a \(*\)-representation of the free \(*\)-algebra \(\mathcal{A}\) on the set \(B\). For given \(x \in \mathcal{A}\), let

\[\|x\| = \sup\{\|\Pi(x)\| : \Pi \text{ is a representation of } (B|R)\}.\]

This supremum defines a \(C^*\)-seminorm on \(\mathcal{A}\) provided that it is finite. If the elements of seminorm 0 are divided out, then the completion of \(\mathcal{A}\) is called the universal \(C^*\)-algebra generated by \(B, R\), or the universal \(C^*\)-algebra on \((B|R)\), and is denoted by \(C^*(B|R)\).

Example 3.5. Let \(B = \{x\}\) and \(R = \{x = x^*, \|x\| < 1\}\). Then \(C^*(B|R)\) is the universal \(C^*\)-algebra generated by a single self-adjoint element of norm 1.

Note that there is no universal \(C^*\)-algebra generated by a single self-adjoint element, because there is no bound on the norm of the element.

For more on universal \(C^*\)-algebras, see Chapter II of [1].

Here, we introduce a universal \(C^*\)-algebra which contains the \(C^*\)-algebra
Definition 3.6. Let G be a semigroupoid, $B = \{\Pi_x\}_{x \in G}$ be a family of partial isometries and R be the set of all relations such that the correspondence $x \rightarrow \pi_x$ is a tight representation of G. The unital universal C^*-algebra generated by B, R, that is, $C^*(B|R)$ denoted by $\tilde{O}(G)$.

In order to give the definition of the C^*-algebra of a semigroupoid G we need to know that, what do we mean by the universal representation of G?

Definition 3.7. A collection of partial isometries, $\{\Pi_x\}_{x \in G}$, such that the correspondence $x \rightarrow \Pi_x$ is a tight representation of G is called the universal representation of G.

Now, we are ready to present the definition of the C^*-algebra of a semigroupoid.

Definition 3.8. The closed \ast-subalgebra of $\tilde{O}(G)$ which is generated by the range of the universal representation of G denoted by $O(G)$, is the C^*-algebra of G.

We close this section by the following important theorem.

Theorem 3.9. If Π is a tight representation of a semigroupoid, G and $x \in G$ is a source element, then $\Pi_x = 0$.

Proof. Since x is a source element, we have $G^x = \phi$. From the fact
that empty set is a covering for G^x, we conclude that $Q_x = 0$. Since $Q_x = \Pi^*_x \Pi_x$, we have $\Pi_x = 0$. \square

References

Bahman Tabatabaie
Department of Mathematics
College of Sciences
Shiraz University
Shiraz 71454, Iran.
E-mail: tabataba@math.susc.ac.ir