Fuglede-Putnam type theorems via the Moore-Penrose inverse and Aluthge transform

Morteza Sohrabi Chegeni, Naser Abbasi, Hossein Emamalipour

Abstract


Let $A, B\in B(H)$ and let $\mbox{Com}(A, B)=\{X \in B(H): AX = XB\}$.
A pair $(A, B)$ is said to have the $FP$-property if
$\mbox{Com}(A, B) \subseteq \mbox{Com}(A^{*} , B^{*})$.
Let $\widetilde{T}$ and $T^\dag$ denote the
Aluthge transform and the Moore-Penrose inverse of $T$,
respectively. We show that (i) if $A^{*}$ is quasinormal, then
$((\widetilde{A})^{\dag},(\widetilde{B})^{\dag})$ has the
$FP$-property; (ii) if $(A^{\dag},B^{\dag})$ has the $FP$-property, then so is
$((\widetilde{A})^{\dag},(\widetilde{B})^{\dag})$. In general,
$(\widetilde{T})^{\dag}\neq \widetilde{T^{\dag}}$.
Finally, we give some
applications  to the Lambert multiplication operator
$M_wEM_u$ on $L^2(\Sigma)$, where $E$ is the
conditional expectation operator

Keywords


Fuglede-Putnam, Aluthge transformation, Moore-penrose inverse, polar decomposition, conditional expectation, partial isometry

Full Text: PDF

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.