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Abstract. In this paper, a revised measure-theoretical approach is
applied for solving some classical optimal control problems. Indeed, the
problem is converted into an optimization problem in measure space and
then it is transformed into a finite dimensional nonlinear programming
problem by using approximation scheme. At last, the nearly optimal
control and trajectory functions are determined from the solution of
the nonlinear optimization problem. A numerical example is given to
demonstrate the efficiency of this method.
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1. Introduction

Optimal Control (OC) theory is applied in different fields such as aerospace,
mechanic, electronics and biomedical engineering [13]. Their problems
are solved by direct and indirect methods, where indirect methods are
usually based on transforming the OC problem into a boundary-value
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problem [15]. In direct methods, the state and control functions are ob-
tained by applying a suitable function transformation or approximation,
where the necessary coefficients of this action are considered as a solution
of a nonlinear optimization problem [10]. Both methods are sensitive to
the initial guess and are unable to determine the global solution. The
measure theoretical approach is a helpful method for a large class of
applied mathematics problems, particularly in OC and optimal shape
design problems. This approach was based on an idea of Young that
Rubio represented it theoretically [16]. Then some researchers improved
the method like Farahi et al. [8, 9], Kamyad et al. [11, 12], Effati [4, 5]
and Fakharzadeh [6, 7]. Rubio in [16] showed that OC systems governed
by ODE (and also PDE), can be solved by use of Radon measures in the
following way: representing the OC problem in variational form, defining
the related measure and transferring the problem into a measure the-
oretical one by extending the underlying space, discretization schemes
and using two step of approximation. Indeed, the solution of the original
problem is approximated by a nonlinear one and then, this new one is
approximated by a finite linear programming (FLP) one. Here, we try
to modify this method in away that solving the nonlinear problem di-
rectly, and show the way of extracting the optimal control and its related
optimal trajectory from its solution.

2. Statement of The Classical Optimal Control
Problem

A classical optimal control problem is defined as (P;):

Min:1(r.) = | "ot (t), u(t))dt

8.t it = glt, (), ult)), ¢ € (tasty):
:L‘(ta) = Zaq, x(tb) = Tp.
It is supposed that A and U are bounded and closed subsets in R™ and

R™, respectively that the trajectory and controls are taken their values
on them, and J = [t,, ] is the time interval that J° = (4, ;). Moreover,
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fo : 2 = Rand g :  — R"™ are continuous functions, where 2 =
JxAxU.

Definition 2.1. A pair of trajectory and control p = (x,u) is admissible
if the following conditions hold:

(i) The trajectory function x is absolutely continuous on J and staying
in the bounded set A.

(ii) The control function u is Lebesgue-measurable on J and takes values
in the bounded set U.

(i4i) The pair (z,u) satisfies in the constraints of problem (Py).

The set of all admissible pairs denoted by W and assume that it is
nonempty.

3. Modifying Classical Control Problem Into a
Nonclassical One

Rubio demonstrated some characteristics of the pairs in W as below [16]:

e Let B be an open ball in R"*! containing J x A; the space of real-
valued continuously differentiable functions on B that they and
their first derivatives are bounded on B is denoted by C’(B). Let
¢ € C'(B), define ¢9 € C(Q) as: ¢9(t,z,u) = ¢ (t,x)g(t,x,u) +
¢¢(t, z); therefore one can result that:

/J 99(t, 2, u)dt = B(ty, 23) — Bta, 7a) = A, Vo € C'(B).

e Let D(J°) be the space of infinitely differentiable functions with
compact support in J°. For ¢ € D(J°), we define: ;(t,z,u) =
z ' () + g (t, z,u)(t), j=1,2,...,n. Then we have:

/ Gidt =0, Vo € D(J°).
J
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Similarly have: [ f(t,z,u)dt = ay, Vf € C1(Q), where C1(€) is the space
of all functions which depend only on the variable ¢t and ay is the
Lebesgue integral of f over J.

Now, consider the following functional for each admissible pair p:

A, FeC() — / F(t,z(t),u(t))dt € R.
J

A, is a positive continuous linear functional on C'(2). If we denote the
space of all positive Radon measures on © by M1 (), by using the
Riesz’s representation theorem [17], there is an one-to-one correspon-
dence that assign each p € W to unique measure p, € M*(Q) such
that:

Ap(F) = /Qqu = up(F), VFeCQ).

To ensure that problem (P;) has a solution, Rubio extended the under-
lying space and considered all the measures that are satisfies the related
constraints of P; (not only those that indeed by Riesz’s theorem). So, the
problem (P;) can be changed into the following nonclassical measure-
theoretical one (P»):

Inf  u(fo)
peM+ (@)
(P2) S.to: u(¢?) =Ay, V¢ e C'(B);

p(;) =0, Ve D(J%);

u(f) =ap,  VfeCi(Q).
Let @ be the solution space of the problem (FP»). By help of weak*
topology, after extending the underlying spaces, Rubio then showed that

the new problem has solution. To identify it, he applied some step of
approximations.

4. Approximation Scheme

First, we consider minimization of u — u(fy) not over the set @, but
over a subset of it that satisfied only a finite number of the constraints
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of (P,) that called it Q(M;y, Ma, M3). This will be achieved by choosing
countable sets of functions whose linear combinations are dense in the
appropriate spaces and then, considering a finite number M;, My and
M3 of them [16] as:

Inf I(P)= pu(fo)

Q(M1,M2,Ms)
(Pg) S.to : ,LL(d)f) = A(z,, 1= 1, 2, ...,Ml;
1(xn)

—0, h=1,2, ... My:
:U’(fs) = afg,, s = 1>27 "'>M3>

where Y, is the sequence of functions of the type ;. If My, My and
M3 tend to infinity, the optimal solution of (Ps) will converge to the
optimal solution of problem (P). But even (P3) is linear, the solution
space of (P3) is still infinite. According to theorem A.5 of [16], we apply
the second stage of approximation by writing an optimal measure u* in

the form:
My+Ma+Ms3

= > ais(g)) (1)

j=1

with of and ¢} € Q, j = 1,2,..., My + My + Ms3; here 6(¢q) € M (Q)
is the unitary atomic measure supported by singleton sets {q} that ¢ €
Q2 and characterized by 6(q)(F) = F(q), VF € C(R2), q € Q. So, the
problem (P3) is equivalent to a nonlinear optimization problem (Py) that
its unknowns are the coefficients a;-‘ and supports {q}‘}, 7=12 ..., M1+
My + Ms:
My+Ma+M;
Min Z a; fo(q;)
j=1
My+Ma+M;s
(P4) S.to: Z Oéjqﬁ;](q;) :A¢i, 1= 1, 27 ceey Ml;
j=1
My+Ma+Ms
a;jxn(q;) =0, h=1,2,...,My;
j=1
Mi+Mo+Ms
Z a;fs(q;) = ay, , s=1,2,...,Ms;
j=1
Oéj}(), jil, 2, ceey M1+M2+M3.
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Rubio in [16] converted the above problem into a finite-dimensional lin-

ear problem by introducing support points in a countable dense subset
of Q0 by applying discretization scheme, which also contains an other
step of approximation as well. Here, we solve directly the nonlinear op-
timization problem (Py) without use of discretization and so on.

5. Optimization Algorithms

When M;, My and Ms tend to infinity, the above nonlinear problem
(NLP) is a large scale problem; therefore, the metaheuristic algorithms
can be used for solving it. Among of them we apply the PSO (Particle
Swarm Optimization) and TLBO (Teaching-Learning Based Optimiza-
tion) algorithms; PSO is a metaheuristic algorithm that it needs few
assumptions about the problem which being optimized and can search
in a very large spaces of candidate solutions. Indeed PSO algorithm is
widely used and rapidly developed for its easy implementation and few
particles required to be tuned [2, 3]. TLBO algorithm is also a popula-
tion based optimization method that uses a population of solutions to
proceed the global solution [1, 14]; it is important to remind that the pro-
cedure to construct a piecewise constant control and trajectory functions
from the obtained solution set {a;‘ >0,7=12,... My + My + M3} by
solving (Py), approximates the action of the optimal measure in (1). This
fact is based on the presented analysis in [16], since there is no need to
construct any partition on J x A.

6. Numerical Example

For demonstrating and comparing the efficiency of our method, we con-
sider a numerical example which is also solved in [16].

Example 6.1. Consider the following optimal control problem:

Min fJx(t)2dt
S.to: & =u;

xz(0) =0, (1) = 0.5,
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Table 1: The optimal value of the cost function and number of

iterations
Method Optimal value of the cost function Number of iterations
Analytically 0.041667
Revised Simplex for FLP 0.041758 25
TLBO for NLP 0.041745 20
PSO for NLP 0.041723 20

where J = [0,1], z(t) € A =1[0,1] and U = [0,1]. In [16], the trajectory
and control functions was obtained by solving the corresponding finite-
dimensional linear programming problem to (P4). As Rubio in [16], we
selected M7 = 2, My = 8 and M3 = 10 in the nonlinear problem (Py)
and solving it by using PSO and TLBO algorithms. The obtained nearly
optimal trajectory and control functions for the corresponding linear and
nonlinear problems are shown in Figures 1, 2 and 3, respectively. The
optimal value of the cost function and the number of iterations with
different procedures, have been shown in Table 1, which indicates that
the obtained result by TLBO is better than FLP and the obtained result
by PSO is better than both.
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Figure 1. (a) Nearly optimal control and (b) trajectory functions
obtained from FLP
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Figure 2. (a) Nearly optimal control and (b) trajectory functions from
NLP by TLBO algorithm
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Figure 3. (a) Nearly optimal control and (b) trajectory functions from
NLP by PSO algorithm

7. Conclusion

By using the measure-theoretical approach, the classical optimal con-
trol problem was transformed to a problem in measure space that is
an infinite-dimensional linear programming problem. By omitting an
approximation step in compare with [16], in this paper we present a
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modified method which that the solution of the problem can be ob-
tained from the solution of a finite-dimensional nonlinear programming

problem; in this regard, the suitable metaheuristic and related heuristic

optimization algorithms can be used and a step of approximation can

be omitted. Therefore, the accuracy of the results are better and the

new obtained optimal approximated solutions (optimal value and op-

timal trajectory and control functions) are nearer to the actual one in

compare with the previous method.
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