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Abstract. We introduce the notion of modified Hardy-Rogers type F-
contraction on closed ball, F-multiplicative contraction on closed ball
and we obtain some new fixed point results for such contractions. Some
comparative examples are constructed to illustrate these results. The
existence of the solution of family of Volterra type integral equations is
shown via fixed point methods.
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1. Introduction and Preliminaries

Banach contraction Principle states that any contraction on a complete
metric space has a unique fixed point. This principle guarantees the ex-
istence and uniqueness of the solution of considerable problems arising
in mathematics. Because of its importance for mathematical theory, Ba-
nach Contraction Principle has been extended and generalized in many
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directions. One of the most interesting generalization of it was given
by Wardowski [29]. Later on, Wardowski and Van Dung [30] gave the
idea of F-weak contraction and proved a theorem concerning F-weak
contraction. After wards, Abbas et al. [1] further generalized the con-
cept of F-contraction and proved certain fixed point results. Hussain
and Salimi [14] introduced an a-GF' contraction with respect to a gen-
eral family of functions G and established Wardowski type fixed point
results in ordered metric spaces. Batra et al. [7, 8] extended the con-
cept of F-contraction on graphs and altered distances. They proved some
fixed point and coincidence point results by illustrating them with some
examples. Recently, Cosentino and Vetro [11] followed the approach of
F-contraction and obtained some fixed point theorems of Hardy-Rogers-
type for self-mappings in complete metric spaces and complete ordered
metric spaces.

From the application point of view the situation is not yet completely
satisfactory because it frequently happens that a mapping 7" is a contrac-
tion not on the entire space X but merely on a subset Y of X. However,
if Y is closed and a Picard iterative sequence {z,} in X converges to
some x in X then by imposing a subtle restriction on the choice of xg,
one may force Picard iterative iterative sequence to stay eventually in
Y. In this case, closedness of Y coupled with some suitable contractive
condition establish the existence of a fixed point of T.

Throughout this paper, we denote (0, 00) by R, [0, 00) by R, (—00, +00)
by R and set of natural numbers by N.

Definition 1.1. [9] Let X be a nonempty set. A mapping d: X x X —
Rar is called b-metric if there exists a real number s > 1 such that for
every x,y,z € X, we have

(i) If d(x,y) = 0, if and only if x =y,

(i1) d(z,y) = d(y,z) for all z,y € X,

(ii) d(z,y) < sld(z,z)+d(z,y)]. In this case, the pair (X,d) is
called a b-metric space.

Definition 1.2. [20] Let X be a nonempty set and let d : X x X — R}
be a function, called a b-dislocated metric if there exists a real number
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s = 1 such that, the following conditions hold for every z,y,z € X :
(i) If d(x,y) = O, then & = y,
(i) d(x, y) = d(y, ),
(i) d(z,y) < s[d(z,2) +d(z,y)].
The pair (X, d) is called a b-dislocated metric space(b-metric-like space).

First we recall the concept of F-contraction, which was introduced by
Wardowski [29], later we will mention his result.

Definition 1.3. A mapping T : X — X, is said to be F-contraction if
it satisfies following condition:

(d(T(x),T(y)) >0 = 7+ F(d(T(x),T(y) < Fd(z,y))). (1)
for all x,y € X and some 7 > 0. Where F : Rt — R is a mapping
satisfying following properties:

(F1): F is strictly increasing.

(F2): For each sequence {ay} of positive numbers lim,, o0 an, = 0 if and
only if limy, oo F(ay) = —oo.

(F3): There exists 0 € (0,1) such that lim,_+ ()’ F(a) = 0.
Theorem 1.4. [29] Let (X,d) be a complete metric space and let T :

X — X be a F-contraction. Then T has a unique fized point v € X and
for every g € X a sequence {T"(xo)} Yn € N is convergent to v.

Theorem 1.5. [29] Let F : Rt — R be given by the formula F(a) =
Ina. It is clear that F satisfied (Fy) — (F3) for any k € (0,1). Each
mapping T : X — X satisfying (1) is a F-contraction such that

A(T(2), T(W)) < e "d(z,y), for all 2,y € X, T(x) £ T(y).
It is clear that for x,y € X such that T(x) = T(y), the inequality
d(T(z),T(y)) < e "d(x,y), also holds, i.e. T is a Banach contraction.
Remark 1.6. From (Fy) and (1) it is easy to conclude that every F-
contraction is necessarily continuous.

Secelean [24] proved the following lemma and replaced condition (F2) by
an equivalent but a more simple condition (F2').



46 E. AMEER AND M. ARSHAD

Lemma 1.7. [2}] Let F : Rt — R be an increasing map and {an}oe
be a sequence of positive real numbers. Then the following assertions

hold:

(a) if lim F(ap) = —o00 then lim ay, = 0;
(b) if inf F = —o0 and lim «, =0, then lim F (o) = —oc.

He replaced the following condition.
(F2') inf F = —
or, also, by
(F2") there exists a sequence {aw, }oo | of positive real numbers such that

lim F (o) = —o0.
n—~ao0

Recently Piri [19] replaced the following condition (F3') instead of the
condition (F3) in Definition 1.3.

(F3') F is continuous on (0,00).

We denote by A the set of all functions satisfying the conditions (F'1),
(F2) and (F3').

Definition 1.8. Let X be a nonempty set. Multiplicative metric [26] is
a mapping d : X x X — R satisfying the following conditions:

(m1) d(z,y) >1 for all z,y € X and d(z,y) =1 if and only if v =y,
(m2) d(z,y) =d(y,z) > 1 for all z,y € X,

(m3) d(z,y) < d(x,z).d(z,y)for all x,y,z € X (multiplicative triangle
inequality).

Also (X, d) is called a multiplicative metric space.

On the other hand, Ozavsar and Cervikel [23] generalized the celebrated
Banach contraction mapping principle in the setup of multiplicative met-
TiC Spaces.

Definition 1.9. [29] Let (X,d) be a multiplicative metric space, x € X
and € > 1. We now define a set

B.(z) ={y € X \d(z,y) <¢e},
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which is called a multiplicative open ball of radius € with center x. Sim-
ilarly, one can describe a multiplicative closed ball as

Be(x) ={y € X\d(z,y) <e}.

Definition 1.10. [27] Let (X, d) be a multiplicative metric space, {x,}
be a sequence in X, and x € X. If, for every multiplicative open ball
B.(x), there exists a natural number N such that n > N = =z, €
B(x), then the sequence {xy} is said to be multiplicative convergent to
x, denoted by x, — T as n — 0.

Lemma 1.11. [27] Let (X,d) be a multiplicative metric space, {x,} be
a sequence in X and x € X. Then x, — x as n — oo if and only if
d(xp,z) — 1 as n — oo.

Definition 1.12. [27] Let (X,d) be a multiplicative metric space and
{zn} be a sequence in X. The sequence {x,} is called a multiplica-
tive Cauchy sequence if, for all € > 1, there exists N € N such that
d(Tm, xy) < € for my,n > N.

Theorem 1.13. [27] Let (X, dx) and (X, dy) be two multiplicative met-
ric spaces, T : X — X be a mapping and {x,} be any sequence in X.
Then T is multiplicative continuous at the point x € X if and only if
Tz, — Tx for every sequence {x,} with T, — x as n — 0.

Lemma 1.14. [27] Let (X, d) be a multiplicative metric space and {x,,}
be a sequence in X. Then {x,} is a multiplicative Cauchy sequence if
and only if d(xpm,x,) — 1 as m,n — 0.

Definition 1.15. [27] Let (X,d) be a multiplicative metric space. The
multiplicative metric paces X is said to be complete if and only if every
Cauchy sequence {x,} in X for all n € N converges in X.

Definition 1.16. [27] Let (X,d) be a multiplicative metric space. A
self mapping T : X — X is said to be multiplicative contraction if there
exists A € [0,1) such that

d(Tz, Ty) < (d(z,y)* (2)
Ve,y € X.
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Theorem 1.17. [27] Let (X, d) be a complete multiplicative metric space
and T : X — X be multiplicative contraction, then T has a unique fized
point.

Theorem 1.18. [16, Theorem 5.1.4] Let (X,d) be a complete metric
space, T : X — X be a mapping, r > 0 and x¢ be an arbitrary point in
X. Suppose there exists k € [0,1) with

d(T(x),T(y)) < kd(x,y), for all z,y € Y = B(zo,7) (3)

and d(xg, T(xo)) < (1 — k)r. Then there exists a unique point x* in
B(xg,r) such that * =T (x*).

2. Modified Hardy-Rogers Type F-Contraction
on Closed Ball

In this section, we introduce the concept of modified Hardy-Rogers type
F-contractions on closed ball in b-metric like spaces, and establish new
fixed point theorems for such contraction.

Definition 2.1. Let (X, d) be a b-metric like space. The mapping T :
X — X is called modified Hardy-Rogers type F'-contraction on closed
ball if there exists F' € Ap and 7 > 0 such that

T+F (d(Tx,Ty)) <

d(y,Ty)[1+d(z,Tz)] _|_)\d(y,Ty)+d(y,Tx) + d(z,Tz)[1+d(y,Tz)]
1+d(z,y) 1+d(y,Ty)d(y,Tx) 1+d(2,y)+d(y,Ty)

F( ad (z,y) + Bd (z, Ty) + vd (y, Tx) + 6d (y, Ty) + )

(4)

for all z,y € B(xg,r) C X with d(T'z,Ty) > 0, where o, 3,7, 6,1, A\, u >
0 such that sa + (52+S)ﬁ+252'y+5+17—|—)\+5u< 1.
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we now introduce a new type of fixed point theorem for modified Hardy-
Rogers type F-contraction on closed ball in a complete b-metric like
space.

Theorem 2.2. Let (X, d) be a complete b-metric like space, T be a con-
tinuous modified Hardy-Rogers type F-contraction on closed ball B (xg,r) C
X and xg be an arbitrary point in X. Moreover,

d(xo,Txo) < (1 —0)r, (5)
a+sB+2sy+p

where 0 = Tsh—o—— and r > 0. Then there exist a point z*in

B (zg,r) such that

Tx* = z*. Furthermore, if a + 8+ v+ A < 1, then the fixed point of T
is unique.

Proof. Choose a point 1 in X such that z1 = Tzg. continuing in this

way, so we get xp41 = Ty, for all n > 0 and this implies that (z,,) is

a nonincreasing sequence. Now we will prove that x,, € B(xzg,r) for all

n € N, by using mathematical induction. Since from (5), we have
d(xo,x1) = d(xo, Txg) < (1 —0)r <,

thus, 1 € B(xo,r). Suppose zs....x; € B(xg,r) for some j € N. Thus
from (4), we obtain

F(d(xj, .CCj.H)) = F(d(TJ}j_l, T(l)j)) <

F[Ozd(xj_l, Z‘j) + ,Bd(xj_l, ij) + ’yd(a:j, T:Cj_1) + (5d(acj, T:Cj)
d(xj, T{L'j) [1 + d(xj_l, Tl'j_l)] A d(a:j, ij) + d(xj, T.’L’j_l)
1 +d($k—17xk) 1 +d(xj,T1,‘j)d($j,ij_1)
d(:L’j_l, T.Tj_l) [1 + d(l’j, T«Tj—l)]] _
L+ d(wj1,25) + d(xj, Tzj)

Flad(zj-1,75) + Bd(zj-1,7j11) +vd(zj, 25) + 0d(), T511)
d(xj, xjq1) [1 +d(xj_1,25)] L d(zj,xj41) 4 d(xj, ;)
1+ d(zj-1,25) L+ d(zj, zj41)d(z), 75)
d(zj-1,2)) [1 +d(zj,25)] |
L+ d(xj-1,75) + d(zj,2511)

+u
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F(d(l‘j, a:j+1)) < F((Oz + 58+ 28y + ,u) d(l‘j_l, xj)

+(s8+ 6 +n+A) d(zj, zi41)) — 7,
this implies
F(d(zj,zj41)) < F((o+ 88+ 25y + p) d(zj-1, 25)

+ (Sﬁ +0+ n+ >‘) d($]’, xj+1))7

for all n € N. As F' is strictly increasing, so we have
d(zj,zj41) < (a+ sB+ 28y + p) d(zj-1,2))

+ (S,B + ) + n + )\) d(:cj, .’Ej+1).

Which implies
(L—=sB=0—n—=Ad(xj,zj41) < (a+ 58+ 2sy+ p) d(@j-1, ;).

a+sB+2sy+p
d(xj,xj+1) < <1 —Sﬁ—5—7’]— )\) d($j,1,l’j).

_ atsBt2sy+p
Here 6 = Tosi—d—n—x < 1. Hence,

d(xj,l'jurl) < Gd(a:j,l,xj) < 92d($j,2,l’j71) <0 < de($0,$1). (6)
Now,

< S[d(mg,[]}l)+...+d<l’j,xj+1)]
< sd(zo,z1)[1+ 0+ ...+ 67]
(1— 6711
-

d($0,$j+1)

N

s(1—10) <.

Thus xj41 € B(xg,r). Hence x, € B(xo,r) for all n € N. Continuing
this process, we get

F(d(xp,xnt1)) = F(d(Txp-1,Tzy)) <
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Flad(xp—1,xn) + Bd(xn—1,Txy) + vd(2p, Txpn—1) + 0d(zp, T'zy)
d(xp, Tzy) 1+ d(xp—1,TTHn_1)] L d(xp, Txy) + d(zp, Trp—1)
1+ d(zp-1,2n) 1+ d(zy, Txy)d(xn, Trp—1)
d(xp—1,Txn—1)[1+ d(zy, T:cn,l)]] .
1+ d(zp—1,zn) + d(zpn, Txy)

+u

Flad(xp—1,xy) + Bd(Tn-1, Tnt1) + Yd(XTp, xp) + 0d(xp, Tpi1)
d(zp, Tpi1) 1+ d(zp—1,2n)] ) d(zpn, Tni1) + d(Tn, zn)
1+ d(zp—1,2n) 1+ d(xn, Tpt1)d(Tn, )
d(xp—1,xp) [1 + d(xp, )]

14+ d(zp—1,2n) + d(zn, Tni1)

+p |—7

F(d(zp, zny1)) < F((a+ 8B+ 28y + p) d(Tn-1,2n)
T (s8+0+n+ A d(@n, Tny1)) — 7,
this implies
F(d(zn,znt1)) < F((a+ 86 + 25y + p) d(zp—1,2y)
+ (88 +6+n+A)d(@n, Tpt1)),
for all n € N. As F' is strictly increasing, so we have
d(@n, Tp1) < (a+ 88+ 28y + p) d(wp-1,75)
+(s8+6+n+A)d(@n, Tnir).
Which implies
(1—=sB—0—n—Nd(@n, xnt1) < (@ + 6+ 28y + p) d(zp—_1,xp).

a+sB+2sy+ p
d(Xp, Tpt1) < (1 B By S /\> d(xp—1,Tn).

_ otsB2sy+u
Here 6 = Tosi—d—n-2 < 1. Hence,

d(Tp, Tpy1) < 0d(xp—1, ) < d(Tp—1,Ty). (7)
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Consequently,
T+ F (d(2n, 2n41)) < F (d(@n-1,2n)) -

which implies,

F(d(zn, tnt1)) < F(d(zn-1,2,)) — 7
= F (d(Txn_g, Twn_1)> - T
< F(d(xp—2,Tn-1)) — 27
= F (d(Txn_g, Twn_2)> — 27
< F (d(xn 371'%72)) —37
< F(d(zg,x1)) — nt
This implies that
F (d(zp,xn+1)) < F(d(xo,21)) — nT. (8)
And so lim F (d(xn,zpt+1)) = —o0o. By (F2), we find that
lim d(xy, xny1) = 0. 9)

We shall prove that (x,) is Cauchy in (X, d). So, it suffices to show that

lim d(zy,z,) = 0. We argue by contradiction. Suppose there exist
n—oo

e > 0 and sequences (n(p)) and (m(p)) of natural numbers such that

n(p) > m(p) > D, d(xn(p)axm(p)) Z e,

d(Tp(p)—1, Tp(py) < € forall p e N. 10

p)—
By triangular inequality, we have
A Zn(p)s Tm(p) <S[A(Tnp)s Tn(p)—1) + ATn(p)-1, Tm(p))]

<se + 8d(Tp(p)> Tr(p)—1) (11)
=s& + 8d(Tp(p)—1, TTn(p)—1)-
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From (9), there exists p; € N such that for all p > p;
d(xn(p)fla Txn(p)fl) <Ee.
Combining (11) to (12) yields that

d(Tp(p)s Trm(p)) < 28 for all p > p1.

93

(12)

(13)

On the other hand, by definition of a modified Hardy-Rogers type F-

contraction on closed ball,

F(e) < F(d(Tx Ty(p), T
+ Yd(Z () T (p)—1) + 0d(Tpy () Ta:m(p))
y JEme, T ») [1+ d@ngp)—1, TTp(p)-1)]
1+d( Tn(p)=1> Tm(p))
d(@m(p), TTmp)) + A(@m(p); TCn(p)-1)
Lt d(@a(p), T () ) AT ) s T (p) 1)
1 1 Tong) 1) [+ Ay Ty )]y
L+ d(Zpp)—1, Tm(p)) + ATi(p), TZm(p))
Flad(znp), Tmp)) + Bd(@np) -1, Tm(p)+1)
+ 7d(Zm(p), Tn(p)) + 0d(Zrn(p)s Tm(p)+1)
(T (p) s Tm(p)+1) [1 +d(ﬂf () Tn(p))]
L+ d(@n(p)—1, Zm(p))
A(&m(p), Tm(p)+1) + ( m(p): Ln(p))
G (p)+1)d( (p>, n(p))
)1 Tnie ) [1+ m(p Tn(p))] |
1+ d(l‘n —1:Tm p)) ( m(p)—H)
Which implies,

+n

+A

F(e) < F [sas + (s* + 5) Be + 25°ye + 0 + ne + Ae + spe| — 7.

As, sa+(32+s)ﬁ+2327+5+n+)\+su<1, SO we get

sae + (8% +s) Be + 25%ye + 6 + ne + Ae + spe < g,

p))) < F[ad( Ln(p), L )) + ﬂd(xn(p)—hTwm

)
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we deduce that
F(e) < F(e),

which is a contradiction. Thus, (z,) is a Cauchy sequence in the com-
plete b-metric like space (B(ajo,r),d> . Since (B(a:o, ), d) is a complete

metric space, so there exists 2* € B(xg, ) such that z,, — z* as n — oc.
Since T is continuous, then,

¥ = lim x, = lim T"(z¢) = lim 7" (20) = T( lim T™(z0)) = T'(z*).

n—oo n—oo n—oo n—oo

Hence z* = T'(z*) that is z* is fixed point of T'. Finally, to prove z* is a

unique fixed point of T, let x,y € B(zg,r) and x # y be any two fixed
point of T. Then we have

T+ F(d(z,y) =7+ F(d(Tz,T(y))) < Flod(z,y)
+4d(z, Ty) + ~vd(y, Tx) + dd(y, Ty)
d(y, Ty) [1 + d(z, Tz)] d(y,Ty) + d(y, T'x)
1+d(z,y) 1+d(y, Ty)d(y, Tx)
d(z,Tx) [1 + d(y, T:B)]]
"4 d(w,y) +d(y. Ty)
=F(a+ 8+~ + N d(z,y)

Which implies
d(z,y) < (a+ B+~ +A)d(z,y) < d(z,y),

which is a contradiction. Thus d(z,y) = 0. Hence = y. This completes
the proof. [

Example 2.3. Let X = [0,1] and d (z,y) = (max {z,y})*. Then (X, d)
is a complete b-metric like space with a constant s = 2. Define the
mapping T : X — X by,

[SA RN
[l el

I;

rw={ ]

if x € [0,
ifxe(%,
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1 1
Set 6 = 0.26, ¢ = 5 r= then B(zg,r) = [O, %] If F(t) = In(t),
t > 0, then

d(z0, T(x0)) = %5 - 610' _ % <(1- 0

For z,y € B(xg,r), we get

d(Tz,Ty) = (max{Tz, Ty})*= (max {3 y}

2
1)
= o (max{z,y))?

< é (max {z,y})? +0 (max {ZL‘, %})2

1 z1\2 1 AR
+ g (max{u 7})"+ 5p (max{n. 7})
L1 (max{n 1))’ |1+ (max {z, £})%]
50 1+ (max {z,y})?
1 (max{y. ¥})" + (max {y. §})*
3014 (max {y, 4})” (max {y, £ })"
e o)’ 1+ (max {y,5})]
1+ (max {z,y}) + (max {y, 4})*
= ad(z,y)+ Bd(x, Ty) + vd (y, Tx) + dd (y, Ty) +
dly.Ty) 1 +d(z.To)] \ dy.Ty) +d(y,T2)
1+d(z,y) L+d(y, Ty)d(y,Tx)
d(x,Tx)[1+d(y,Tz)]
T+ d(@,y) +dy, Ty)’

Thus,

dT(z), T(y)) < od(z,y)+p6d(z,Ty)+vd(y, Tz) +d(y, Ty) +
dly.Ty) L +d (@ Tx)] , dly,Ty) +d(y,Tz)
1+d(z,y) 1+d(y,Ty)d(y, Tx)
d(z,Tx)[1+d(y,Tx)]
| +d(z,y) +d(y, Ty)
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Which implies

7+In (d(T(x), T(y)))

Ty)[1+d(z,Tz)] d(y,Ty)+d(y,Tx) d(z,Tz)[1+d(y,Tz)]
1 + AThdly TydteT) T AT )l Ty)

( ad (z,y) + pd (z, Ty) + vd (y, Tx) + dd (y, Ty) + )
<In d(

1+d(z,y)

That is

T+F (d(T(x),T(y)))

X

ad (z,y) + pd (x,Ty) + ~vd (y, Tx) + 6d (y, Ty) +
P\ dwTy)tde )] |y dwTy)tdyTe) | d@To)[tdyTo)
U T+d(y, Ty)d(y,Tz) T H

1+d(z,y) 1+d(z,y)+d(y,Ty)

forT:(0,%},a:%,ﬁz,u:(),v:%,éz%,nzg)—loand)\:%.
Thus T satisfies all the conditions of Theorem 2.2 on closed ball and T’

has a unique fixed point in B (1—15, %) Now if x = %,y =1¢€ (%, 1] , then

T+F (d(T(x),T(y)))

d(y,Ty)[1+d(z,Tz)] +A d(y,Ty)+d(y,Tz) + d(z,Tx)[1+d(y,Tx)]
1+d(z,y) 1+d(y,Ty)d(y,Tx) 1+d(z,y)+d(y,Ty)

< ad (z,y) + Bd (z, Ty) + vd (y, Tx) + 6d (y, Ty) + )
> F .

and consequently, condition (4) does not hold on X. .

Corollary 2.4. Let T be a continuous selfmap in a complete b-metric
like space (X,d) and xo be an arbitrary point in X and r > 0. Assume
that F € Ap and 7 > 0 for all z,y € B(xo,7) C X with d(TzTy) >
Osuch that

T4+ F(d(Tz,Ty)) < F(ad(x,y)); where 0 < a < 1.
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Moreover,

d(zo,Tzo) < (1 — a)r, (14)
Then there exist a point x* in B (xg,r) such that Tx* = x*.

Example 2.5. Let X = [0,2] and d (z,y) = |z —y|* + 15 + 15- Then
(X, d) is a complete b-metric like space. Define the mapping 7" : X — X
by,

z if z € [0,1];
_ 3 1 s ]
T(@) {x—; if 2 €(1,2].
1 .
Set a = 0= =5 then B(xzg,r) = [0,1]. If F(t) =1In(¢t), t > 0,
then
d(zo. T(an) = |5 — ;| = 1 < (1 —0)
o, Xo)) = 1 —4 ar.
For z,y € B(xg,r), the inequality
Tx Ty
d(Tz,Ty) = |Tz—Ty* +—=+ ==
T YR,z y 1, e % Y
= 1375l oot ol Aty

2 x Yy
['x UIETRETIE

Wl

holds. Thus,
d(T'(z), T(y)) < ad(z,y) .

Which implies
7+ (d(T(2), T(y))) < In(ad(z,y)).

That is

T+ F(d(T(x),T(y)) < F (od (z,y))
forT:ﬁ,%<a<%<1andﬁ:’y:5:77:)\:,u:0.ThusT
satisfies all the conditions of Corollary 2.4 on closed ball and ”0” is the
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unique fixed point. Now if x = 1.5,y = 2 € (1, 2], then

1 12 z-% y-1
d(T(z), T = lz—-—y+- 2 2
(T@).TW) = |o—5-y+3| + 75>+ 1
2€r—1 29—1
_ 2 Yy
= =yl 5 g
T S AN AN
= -yl gt 10
2 z Yy
— 4+ 2 =d .

Which implies
d(T(x), T(y)) > d(z,y)
7+ In(d(T(x), T(y))) £ In(d(z,y))

and consequently, F-contraction condition (1) does not hold on X.

3. F-Multiplicative Contraction on Closed Ball

In this section, we define a new contraction called F-multiplicative con-
traction on closed ball and obtained a new fixed point theorem for such
contraction in complete multiplicative metric spaces.

Definition 3.1. Let (X,d) be a multiplicative metric space. The map-
ping T : X — X is called F-multiplicative contraction on closed ball if
there exists T > 1 such that

T.F (d(Tz,Ty)) < F(d(z,y)); (15)

and
d(zo, Txo) < v where X € [0,1) and r > 0. (16)

for all z,y € B(xo,r) € X with d(Tz,Ty) > 1, where F : (1,00) —
(1,00) is a mapping satisfying the following conditions:

(F1*) F is non-decreasing, i.e. for all x,y € [1,00) such that x <y, we
have F(z) < F(y);

(F2*) for each sequence {an}22 1 in [1,00), lim, oo o, =1 if and only
if limy, oo F(ay,) = 0;
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(F3*) F is continuous mapping.

we now establish a new type of fixed point theorem for F-multiplicative
contraction on closed ball in a complete multiplicative metric space.

Theorem 3.2. Let (X, d) be a complete multiplicative metric space. Let

T:X — X be an F-multiplicative contraction mapping on a closed ball

- N

B(xo,r) and xg be an arbitrary point in X. Moreover, ‘Hod(ﬁUo, Txp) <r
j:

for all j € N, Then there exist a unique point x* in B(xg,r) such that

T(z*) = z*.

Proof. Choose a point 1 in X such that 1 = Tzg. continuing in this
way, so we get xp41 = Tz, for all n > 0 and this implies that (z,,) is
a nonincreasing sequence. Now we will prove that x,, € B(xzg,r) for all
n € N, by using mathematical induction. Since from (16), we have

d(xo,z1) = d(xo, Txo) < 1= < T,

thus, 1 € B(xo,r). Suppose zs....x; € B(xg,r) for some j € N. Thus
from (15), we obtain

F(d(zj,zj41)) = F(d(Txj-1,Txj)) < —Fld(zj-1,25)] < Fld(z-1,2;)]

S

d(wj, xj41) < d(xj—1,Txj 1) (17)

Now, using triangular inequality and (17), we get

d(a;o,xj+1) § d(l’o,l’l) ..... d(xj,xj+1)

Thus zj41 € B(xg,r). Hence z,, € B(xg,r) for all n € N continuing this
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process, we get

Fld(eap)) = P(Tz,00.T2,) € SFld@e, o)
< %F[d(T«Tn—QaTwn—l)]
< %F[d(mn_z,an)]

T

1
< Tan[d(afo,xl)].
And so lim F (d(xn,znt1)) = 0. By (F2), we find that

lim d(zy, zp41) = 1. (18)

n—oo

We shall prove that (x,,) is Cauchy in (X, d). So, it suffices to show that
lim d(zy,z,) = 1. We argue by contradiction. Suppose there exist
n—oo

e > 0 and n(p) > m(p) > p, where n(p) is least number greater than
m(q) such that

d(:(}n(p), xm(p)) =€, d(xn(p)—b xm(p)) < e forall peN. (19)
By triangular inequality, we have

€ < d(xn(p)a :Em(p)) gd(l’n(p% xn(p)—l)'d(l‘n(p)—la J"m(p))

(20)
<d($n(p)7 (L'n(p)fl)‘g-

Which as p — oo implies that lim d(2y), Tm(p)) = €.
p—00

A Zn(p); Tm(p) < ATn(p)s Tn(p)-1)-ATn(p) -1, Tm(p)-1)-& (Tma(p) 1> Tin(p))
and
d(Zn(p)-1> Tin(p)-1) < ATn(p)—1,Zn(p)-ATnp)s Tmp)-d (Tm(p): Tm(p)-1)
Thus, as n — oo from above two inequalities, we have lim d(y,(p)—1, Tim(p)—1) =
p—00
€. Put z = x,,(5)—1, and y = ()1 in (3.1) we get
1
F(d(xn(p)yxm(p))) < ;F(d(xn(p)—laxm(p)—l))
< F(d(xn(p)—laxm(p)—l))v
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which further by continuity of F and 7 > 1 gives F(¢) < F(e) Hence
{z,} is a Cauchy sequence in the complete multiplicative metric space

(B(xo,r),d>. Since (B(xo,r),d> is a complete multiplicative metric

space, so there exists z* € B(xg,r) such that z, — x* as n — co. Since

T is multiplicative continuous, then,

¥ = lim z, = lim T"(zg) = lim T (xg) = T( lim T"(z0)) = T(a*).
n—oo n—oo n—oo n—oo

Hence z* = T'(z*) that is z* is fixed point of 7. Finally, the uniqueness

of the fixed point follows from condition (3.1).

Example 3.3. Let X = R and d :R? — R be a multiplicative metric
defined by d(z,y) = el*¥l. Note that (R, d) is a complete multiplicative
metric space. Define mapping, T: X — X, and F : R™ — R by
. .
[ i if z € 10,1],
T(@) { x — 1 otherwise.

F(t) =1In(t) with 7 = 2. Set A = & 2o = 2, r = 4 then B(zo,r) = [0,1].
Now

—

’r‘(l_A) = 4(176)7

and so d(zg, Tro) < 7= holds. Note also that, For if z,y € B(xg,),

we have

— z_Y L —
6|T33 Ty| — el4 4‘ :€4|I yl < elm y|’

which implies,
d(T(z), T(y)) = e1l¥ < elo=vl = 4(z, ).
That is,
d(T(x),T(y)) < d(z,y).

Consequently,
7.In (d(T'(x),T(y))) < In(d(z,y)).

If x ¢ B(xg,r) or y ¢ B(xp,r) then
d(T(z),T(y)) = el =170+ = elo=vl = gz, ),

this implies,

d(T(z), T(y)) > d(z,y)", where X € [0,1),
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and consequently, contractive condition (2) does not hold on X. But,
hypotheses of Theorem 3.2 hold on closed ball and x = 0 is a fixed point
of T.

4. Application

In this section, we discuss an application of fixed point Theorem, proved
in the previous section, in solving the family of Volterra type integral
equations given below.

u(t) = / G (t,5) K (s, w(s))ds. (21)
0

for ¢t € [0, a], where a > 0. Let C([0,a], R) be the space of all continuous
functions defined on closed ball [0,a]. For v € C([0,a],R), define sup

norm as: |lull; = sup {u(t)e”"}, where 7 > 0. Let C([0,a],R) be
te(0,a]
endowed with the metric,

dr(u,v) = b [[u(t)] + lo()[]?, (22)

for all u,v € C([0,a],R). Obviously, (C([0,a],R,| - ||;) is a complete
b-metric like space. Define the operator T : C([0,a],R) — C([0,a],R)
by

Tu(t) = /G (t,s) K(s,u(s))ds.
0

Suppose that

t
sup /G(t,s) ds < 1.
te[0,a]

0
To show the existence of solution of integral equation (21), we shall
show, with the application of Theorem 2.2, that T has a fixed point in
C([0,a], R).

Now we prove the following Theorem to ensure the existence of solution
of integral equation (21).
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For more details on such applications we refer the reader to [6, 18].

Theorem 4.1. Assume the following conditions are satisfied:

(1) K : [0,a] x R — R and G : [0,a] x [0,a] — R are continuous
functions;

(2) There exists T > 1, such that

N|=

|K(t,s,u)| + |K(t,s,v)] < [Te_Th(u,U)]
for all t,s € [0,a] and u,v € C([0,a],R), where
h(u,0) = alu(t)] + o + B [lu(t)] + o)) +
Yllo®)] + [Tu(@)* + 6 [Jo(®)] + [ To(t)[]* +
[lo(t)] + | To(#)]]” [ [lu(t)] + [ Tu(t)[]?
[lu(®)] + [o(t)))*
@]+ | To(®)[]* + [Jo(t)] + | Tu(t)]]*
L+ [lo(8)] + [T [Jo(t)] + [Tu(®)]]”
lu®)] + [Tu®]]? [1+ [o(@)] + [Tu)]]
L+ [fu(®)] + [o(@)[]* + [Jo(t)] + [To(t)[]?

Ui

i

)

where, a, B,7,6,n, A\, i = 0 with soHr(s + s) B4282y+5+n+A+sp < 1.
Then the integral equation (4.1) has a solution.

Proof. By assumption (2)

t

' 2
/GtsKlsu / tsKgsv))ds)
0

0
t t 2
/Gts\Klsu ]der/ tSKgS’U))dS)
0 0

2
= /G(t,s (|K1(s,u(s)| + Kg(s,v(s)))ds)
0

[ Tu(®)| + [To(t)])*

/N
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' 2
< G (t,s) (e_Th(u, v))% ds
/
¢ 2
< e "h(u,v) /G (t,s)ds

0
< e Th(u,v).

This implies
[Tu(®)] + [ To(®)])* < e h(u,v),

which further implies
7T+ In ([]Tu(t)| + \Tv(t)\]2> < In (h(u,v)).

So all the conditions of Theorem 2.2 are satisfied. Hence, in the light of
Theorem 2.2, (4.1) has a solution.
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