
1 
 

 Using the Outer Approximation Algorithm For Generating All 

Efficient Extreme Points of DEA  
 

 J. Gerami*  

 
Department of mathematics, Shiraz Branch, Islamic Azad University, Shiraz, Iran. 

  

 Abstract. Identifying the efficient extreme units in a production possibility set is a very 

important matter in data envelopment analysis, as these observed, real units have the best 

performances. In this paper, we proposed a multiple objective programming model, in which the 

feasible region is the production possibility set under the assumption of variable returns to scale 

and the objective function consists of input and output variables. As we know, by increasing the 

dimensions of the problem, the set of efficient points would increase as well; thus, using the 

multiple objective linear programming problem-solving methods in a decision set would lead to 

computational problems and it would be much easier to work in the outcome set instead of the 

decision set. In this research, we show that the efficient points in the outcome set of the suggested 

multiple objective linear programming problems correspond with the efficient extreme points in 

data envelopment analysis. An outer approximation algorithm is presented for production of all 

efficient extreme points in the outcome set. This algorithm provides us with the equations for all 

efficient surfaces. In the outcome set, this algorithm would use few calculations to produce all the 

extreme points. Finally, we demonstrate the presented approach through numerical examples. 

 

Keywords: Data Envelopment Analysis, Multiple objective, linear programming, Outer 

approximation.  

  

1.  Introduction 

 

Data envelopment analysis (DEA) developed by Charnes et al. [12] has become one of the most 

widely used methods in operations research/management science. A reason for this success is that 

DEA is a task-oriented approach and focuses on an important task: to evaluate the relative 

(technical) efficiency of comparable Decision Making Units (DMUs) essentially performing the 

same task. Based on information about existing data on the performance of the units and some 

preliminary assumptions, the purpose of DEA is to empirically characterize the so-called efficient 

frontier (surface) based on the set of available DMUs and to project all DMUs onto this frontier. If 

a DMU lies on the frontier, it is referred to as an efficient unit, otherwise inefficient. Efficiency 

evaluation is based on the data available without taking into account the decision-makers (DM) 

preferences. All efficient DMUs are considered equally “good”. However, if the efficient units are 

not equally preferred by the decision-makers it is necessary to somehow incorporate the 

decision-maker's judgments or a priori knowledge into the analysis. A straightforward and widely 

used method has been to restrict possible values of the multipliers of so-called dual DEA models. 

Approach is to explicitly or implicitly gather direct preference information about the desirable 

input and output-values of DMUs, and insert that information in a form or another into the 

analysis. DEA is a technique based on mathematical programming for evaluating the relative 

efficiency of a set of decision-making units (DMUs). The efficiency of each DMU is determined 
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by the efficiency frontier. The units on the efficiency frontier are assumed efficient; otherwise, 

they are considered as inefficient. In fact, DEA sets up a production possibility set and considers 

its frontier as the efficient frontier made according to the non-domination condition, see, for 

instance DE Witte and Marques (2010). 

For this approach, some ideas can be adopted from research carried out in the field of Multiple 

Criteria Decision Making (MCDM), especially in Multiple Objective Linear Programming 

(MOLP). In MCDM /MOLP, one of the key issues is to provide a decision-makers with a tool, 

which makes it possible to evaluate points lying on the efficient frontier. It has been shown that the 

MOLP and DEA models have a similar structure, see, for instance Hosseinzadeh Lotfi et al. [29]. 

Thus, theory and approaches developed in MOLP for evaluating solutions on the efficient frontier 

can also be applied in DEA. 

This is important that because the dimension of the outcome set is smaller than m+s and the 

dimension of the decision set is n+m+s-1, generating all or portion of outcome set is expected, in 

general, to be less the demanding computationally than generating all or portions of the decision 

set. The identification of DEA efficient units under various DEA models is equivalent to the 

identification of the lowest input and the highest output solutions within the production possibility 

set for the corresponding multi-objective programming problem. The DEA-efficient DMU 

corresponds to the pareto efficient solution (or non-dominated solution). From this point of view, 

just as in the discussion of multi-objective programming, the set of all extreme points of variable 

returns to scale (VRS) models in DEA have significant values in the field of DEA, See, for 

instance Benson [7], Rockafellar [40]. In this article, we the use outer approximation algorithm for 

generating the set of all efficient extreme points of models DEA with VRS as proposed by Benson 

[8] and to do so, we use all efficient extreme points of the outcome set of the MOLP problem.  

The organization of this paper is as follows, in section 2, we present literature review. In section 3, 

we present MOLP problem and its relation to models DEA with VRS, and we provide the 

theoretical foundation of the outer approximation procedure. We summarize some relevant results 

concerning efficient extreme points of the MOLP problem. Section 4, provides a detailed 

statement of the algorithm; additionally, a small example problem is solved for illustration 

purpose. Section 6, provides a computational experiment and statistical analysis. Some concluding 

remarks are given in the last section. 

 

2. Literature review 

 
In recent years, there have been a number of studies discussing the relationship between DEA and 

MOLP models. In their article, Doyle and Green [20] showed that DEA is an MCDM method. 

Alene et al. [1] used MOLP problem solving methods to apply the decision maker’s a priori 

knowledge in DEA problems. Golany [26] presented a data envelopment analysis model with a 

MOLP structure and used interactive MOLP methods to solve the model. Their model helped the 

decision maker (DM) to allocate a set of inputs, such as resources, on the efficiency frontier based 

on the level of outputs. Joro et al. [34] revealed that DEA problems have a similar structure to 

MOLP models; therefore, to solve the DEA models, we can use the corresponding reference point 

models in MOLP. 

Wong et al. [46] proposed an equivalent model between DEA and MOLP and demonstrated how 

to solve a DEA problem interactively, without any prior judgment, by transforming a MOLP 

formula. Using interactive MOLP methods, they searched for the most preferred solutions (MPS) 
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points on the efficiency frontier along with resource allocation and target setting according to the 

DM’s a priori knowledge; then, they used interactive approaches such as G-D-F, Steam and Stom 

to solve the model and finally, engaged in a comparison of results. Yang et al. [47] attempted to 

demonstrate the use of interactive MOLP methods for target setting in DEA and illustrated the 

relationship between output-oriented DEA dual models and formulation of maxmin preferred 

points in MOLP models; they used the interactive projected gradient approach to identify the 

efficient units. Malekmohammadi et al. [39] focused on the topic of target setting in DEA using 

MOLP problems; they extended the models presented by Yong et al [47] to simultaneously reduce 

the final inputs and increase the final outputs and showed that instead of solving 𝑛 models, we can 

set our targets according to the DM’s preferences by solving only one model. 

Hosseinzadeh et al. [28] evaluated the relationship between output-oriented dual models in DEA 

and MOLP models. In their study, they showed how a DEA model can be solved interactively by 

transforming a MOLP formula; in this regard, they used the Z-W approach to apply the DM’s a 

priori knowledge in the performance process. Ebrahimnejad et al. [21] proposed an interactive 

MOLP method to identify the target units in DEA models in the presence of undesirable outputs; 

they extended the relationship between BCC models and the reference point model in MOLP 

toward a simultaneous and interactive increase in desirable outputs and decrease in undesirable 

final outputs based on MOLP models. 

The main purpose of MOLP problems is to find the set of efficient solutions. These solutions are 

Pareto optimal solutions that can simultaneously optimize all objective functions. Among these 

units, the efficient extreme units are the most important ones; these would be observed, real units 

and their performance would determine the performance of other units in the system. 

We may search for solutions also on the efficient frontier in DEA. Since the outcome set has a 

much simpler structure and smaller size than the decision set, a handful of researchers in recent 

years have begun to turn their attention to the mathematics and tools for generating all or portions 

of the efficient outcome set, rather than the efficient decision set, for the MOLP problem. See, for 

instance, Banker et al. [2], Banker et al. [3], Benson [4], Benson and Sayin [10], Dauer and Liu 

[17], Dauer and Saleh [18], Dauer and Gallagher [16], Dauer [14, 15]. 

Various methods have been presented for identification of these units, out of which we can 

mention the approaches proposed by Chon [13], Evans [22], Goicoechea et al. [25], Luc [38], 

Sawaragi et al. [41], Steuer [43], Yu [48] and Zeleny [51]. 

One of these approaches is the vector maximization method, see Kuhn and Tucker [37]. We can 

use this method to determine all efficient points in a decision set, see Benson [5], Isermann [31], 

Bitran [11], Villarreal and Karwan [45], Kostreva and Wiecek [36]. The problem with all those 

methods of determining efficient points in the feasible region and the decision set was too many 

calculations and the presented approaches were not convergent in most cases; in this relation, 

when the problem’s dimensions, variables and constraints increase, the set of efficient points 

would expand in MOLP problems and we would face a difficult process for finding the efficient 

set. Since the outcome set has a simpler form and a smaller region compared to the decision set, it 

would be easier to find the efficient points in the outcome, see Steuer [44], Dauer and Liu [17], 

Dauer and Saleh [18], Benson [4, 6], Dauer [14, 15], Gallagher and Saleh [24], Dauer and 

Gallagher [16], Horst et al. [30]. 

Therefore, instead of directly solving the DEA models, we present a DEA model with a MOLP 

structure and use the MOLP model’s outcome set to specify the efficient extreme units. To find the 

set of efficient units in the outcome set, we can employ methods such as the outer approximation 

algorithm [8] and the weight set decomposition algorithm [9]. In this research, we make use of the 
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outer approximation algorithm, which is a convergent algorithm using little calculations based on 

linear searching and linear programming techniques. The following methods have been proposed 

to find DEA efficient points using efficient surfaces in MOLP.  

Jahanshahloo et al. [33] presented a method for finding the piecewise linear frontier of the 

production function in data envelopment analysis. Korhonen [35] introduced another method to 

search for the efficiency frontier in DEA. In another study, Jahanshahloo et al. [32] proposed an 

approach for finding strongly efficient hyperplanes of the production possibility set (PPS) in data 

envelopment analysis. Sayin [42] presented an algorithm for determining efficient faces in DEA. 

Hosseinzadeh et al. [27] proposed a new method for finding the set of efficient surfaces in DEA 

based on MOLP models; in this relation, they introduced a linear programming model that could 

find the efficient defining hyperplanes of the production possibility set. 

The approach proposed in the present paper is a new and distinguished method comparing to 

previous approaches. The advantage to our approach is that this method can determine all efficient 

extreme points of the production possibility set in the outcome set through little calculations. 

 

3. Structural Similarities between MOLP and DEA 

 
Assume that we have 𝑛  observed decision-making units as 𝐷𝑀𝑈𝑗 , 𝑗 = 1, … , 𝑛 , where each 

𝐷𝑀𝑈  consumes an 𝑚 -vector input to produce an 𝑠 -vector output. Suppose that 𝑋𝑗 =

(𝑥1
𝑗
, 𝑥2

𝑗
, … , 𝑥𝑚

𝑗
)𝑡 and 𝑌𝑗 = (𝑦1

𝑗
, 𝑦2

𝑗
, … , 𝑦𝑠

𝑗
)𝑡 are the vectors of inputs and outputs, respectively, for 

𝐷𝑀𝑈𝑗, 𝑗 = 1, … , 𝑛, in which it has been assumed that 𝑋𝑗 ≥ 0, 𝑋𝑗 ≠ 0 and 𝑌𝑗 ≥ 0, 𝑌𝑗 ≠ 0. 𝜆𝑗 

is the reference weight for 𝐷𝑀𝑈𝑗 , 𝑗 = 1, … , 𝑛 . 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝑅𝑚  represents the input 

variable vector. 𝑌 = (𝑦1, 𝑦2, … , 𝑦𝑛) ∈ 𝑅𝑠  shows the output variable vector. We define the 

production possibility set of data envelopment analysis with VRS as follows:  

 

𝑇𝑣 = {(𝑋, 𝑌) = (𝑥1, … , 𝑥𝑚, 𝑦1, … , 𝑦𝑠)| ∑𝑛
𝑗=1 𝜆𝑗𝑦𝑟

𝑗
≥ 𝑦𝑟 , 𝑟 = 1, … , 𝑠, ∑𝑛

𝑗=1 𝜆𝑗𝑥𝑖
𝑗

≤ 𝑥𝑖 , 𝑖 =

1, … , 𝑚, ∑𝑛
𝑗=1 𝜆𝑗 = 1, 𝜆𝑗 ≥ 0, 𝑗 = 1, … , 𝑛}.     

 

We must note that the 𝑇𝑣 set includes all input and output vectors (X, Y) that apply to the set’s 

constraints.  

   

Definition 3.1 𝐷𝑀𝑈𝑜 = (𝑋𝑜 , 𝑌𝑜) ∈ 𝑇𝑣 is called an efficient point if and only if there is not an 

(𝑋, 𝑌) ∈ 𝑇𝑣 such that (𝑋, −𝑌)𝑡 ≤ (𝑋𝑜 , −𝑌𝑜)𝑡 and (𝑋, −𝑌)𝑡 ≠ (−𝑋𝑜 , 𝑌𝑜)𝑡.  

  

Definition 3.2 𝐷𝑀𝑈𝑜 = (𝑋𝑜 , 𝑌𝑜) ∈ 𝑇𝑣 is called a weak efficient point if and only if there is not 

an (𝑋, 𝑌) ∈ 𝑇𝑣 such that (𝑋, −𝑌)𝑡 < (𝑋𝑜 , −𝑌𝑜)𝑡.  

 

Consider the following MOLP problem  

  

              𝑚𝑖𝑛   𝐶𝑡𝑍         

               𝑠. 𝑡.   𝑍 ∈ 𝑅 = {𝑍|𝐴𝑍 ≤ 𝑏, 𝑍 ≥ 0}.            (1) 

 

where 𝐶 = (𝐶1
𝑇 , 𝐶2

𝑇 , … , C𝑝
𝑇)  is a 𝑝 × 𝑛  matrix, 𝑐𝑖

𝑇 = (𝑐𝑖1, 𝑐𝑖2, … , 𝑐𝑖𝑛) ∈ 𝐸𝑛 , 𝑖 = 1, … , 𝑝 

represent the multiples of the 𝑖-th objective function in the MOLP problem. 𝐸𝑛  shows the 
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Euclidean space. 𝐴 is the technology matrix including all variable multiples in problem (1). 𝐴 is 

an 𝑚 × 𝑛 matrix, 𝑛 ≥ 𝑚 and rank(𝐴)=𝑚, 𝑏 = (𝑏1, 𝑏2, … , 𝑏𝑚) ∈ 𝐸𝑚. 𝑍 = (𝑧1, 𝑧2, … , 𝑧𝑛) ∈ 𝐸𝑛, 

𝑍 ∈ 𝑅𝑛 represents the decision-making variable vector in the MOLP problem and 𝑅 shows the 

feasible region of the MOLP problem. 

The Pareto solution and weak Pareto solution of (1) are defined as follows: 

  

Definition 3.3 RZ   is called a Pareto solution of (1)  if there does not exist RZ  such that 

ZCZC TT  , ZCZC TT  .  

  

Definition 3.4 RZ   is called a weak Pareto solution of (1)  if there does not exist RZ  so 

that ZCZC TT > .  

 

Put ),,,,,,,,(=),,(= 111 nsm yyxxYXZ   , mEX  , sEY  , ,nE

mjeC T

j

T

j ,1,=,=  , ,= T

j

T

j eC  smmj  ,1,=  , 
nsmT

j Ee   is a vector whose j th 

element is one and other elements are zero, TT

sm

TT CCCC ),,,(= 21  , and 

sryyyyxxR r

j

rj

n

jnsm ,1,=,|),,,,,,,,{(=
1=111    , 

mixx i

j

ij

n

j
,1,=,

1=
  . 1=

1= j

n

j
 , 0j , },1,= nj  . 

 

Then problem (1)  is converted to  

 

.,1,=0,,1,=0

,1,=0

1=

,1,=

,1,=..

),,,,,(max

1=

1=

1=

11

srymix

nj

mixx

sryyts

yyxx

ri

j

j

n

j

i

j

ij

n

j

r

j

rj

n

j

sm



































              (2) 

In model (2), vector (𝑥1, 𝑥2, … , 𝑥𝑛, 𝑦1, 𝑦2, … , 𝑦𝑛) is the variable vector for inputs and outputs; we 

can obtain the values of this vector by solving model (2). 

Note ),,( YX  is a feasible solution of problem (2) while ),( YX  is a vector belong to objective 

function space of problem (2). 

By considering definition 3.3 ),,( *** YX  is called a pareto solution of (2)  if there does not 

exist ),,( YX  such that ),(),( ** YXYX   and ),(),( ** YXYX  .  

Theorem 3.1.  Let vTYX ),( ** , then  

(i) ),,( *** YX  is a Pareto solution of (2) if and only if ),( ** YX  is an efficient unit in vT . 
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(ii) ),,( *** YX  is a weak Pareto solution of (2) if and only if ),( ** YX  is a weak efficient unit in 

vT . 

Proof. )(i  Let ),,( *** YX  be a Pareto solution of (2) . We show that ),( ** YX  is an efficient 

unit in vT . By contradiction, suppose ),( ** YX  is not an efficient unit in vT , then there is an 

vTYX ),(  such that ),(),( ** YXYX   and ),(),( ** YXYX  . Since vTYX ),( , there 

is a nR  such that ),,( YX  is a feasible solution of (2)  . Since ),(),( ** YXYX   and 

),(),( ** YXYX  , then we have a contradiction; therefore, ),( ** YX is an efficient unit in vT . 

Now suppose ),( ** YX  is an efficient unit in vT . Since vTYX ),( ** , there is a nR*  such 

that ),,( *** YX is a feasible solution of (2) . As ),( ** YX  is an efficient unit in vT , there is no 

vTYX ),(  such that ),(),( ** YXYX   and ),(),( ** YXYX  . Since, there is a vector 

  for each vTYX ),(  such that ),,( YX  is a feasible solution of (2) . Regarding the above 

relations there is no ),,( YX  that is a feasible solution of (2)  such that ),(),( ** YXYX   

and ),(),( ** YXYX  . Therefore ),,( *** YX is a Pareto solution of (2)  and the proof is 

completed. 

(ii) Proof is similar to (i). ∎ 

 

Theorem 3.2. Let }),,,,,(|),,,,,,{(= 1111

=

vsmsm TyyxxyyxxV   , =(V  is called the 

outcome set for MOLP) then dim ( .=)= smV    

Proof. Since ),,,(= 21

T

sm

TT CCCC   and 
T

j

T

j eC = , sj ,1,=  , 
T

j

T

j eC = , .,1,= smmj    

Rank smeeee msmm   =},,,,,{ 11   and vT , then dim smV =)( = . ∎ 

 

Theorem 3.3. The optimal values of problem (2) are finite. 

Proof. Since r

j

rj

n

j
yy  

1=
, sr ,1,=  , and 1=

1= j

n

j
 , 0j , nj ,1,=  , then 

sryr ,1,=,   are finite. Similarly i

j

ij

n

j
xx  

1=
, mi ,1,=  , and 1=

1= j

n

j
 , 0j , 

nj ,1,=  , then   mixi ,1,=,   are finite, Therefore, the optimal values of problem (2)  are 

finite. ∎ 

 

By using the observed DMUs, For each mi ,1,=   and sr ,1,=   , we put 

},1,=,),,,,,(|{max= 11 njTyyxxxv v

j

sm

j

i

AL

i   . 

},1,=,),,,,,(|{min= 11 njTyyxxyv v

j

sm

j

r

AL

mr   .  

Vector smAL

ms

AL

m

AL

m

ALALAL Rvvvvvv 

 ),,,,,,(= 121   is called the anti-ideal point of outcome set 

for problem (2) . Let smRv ˆ  satisfy ALvv <ˆ , we define V as follows: 

),,,,,(ˆ|),,,,,,(={= 11121 smmsmm yyxxvvvvvvvvV   , for some 

}),,,,,( 11 vsm Tyyxx  .  
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Theorem 3.4. Set V  is a nonempty, bounded polyhedron in smR   of dimension sm . 

Proof. Since v

AL TYXYXvv  ),(),,(<<ˆ , vT , by Theorem (3.3), the definition of V  

implies that V  is a nonempty, bounded set in smR  . We may write )(= 2

=

1 VVVV  , where 

}ˆ|{=1 vvRvV sm    and 0}|{=2   ZRZV sm , Since 1V , 2V , =V  are polyhedral sets as 

proposed by Dauer and Gallagher [10], therefore V  is a polyhedral set. Since 

,),(),,(<ˆ
vTYXYXv   then IntVIntV (  show interior points set of V), by Theorem (3.2) 

the dimension of V  is sm , and the proof is complete.∎  

 

A point Vvo   is called an efficient (or admissible) point of V  when no Vv  exist such that 
ovv   and ovv  . When no Vv  exist such that ovv > , then ov  is called a weakly efficient 

(or weakly admissible) point of V . Let EV  and WEV  denote the set all efficient and weakly 

efficient points, respectively of V .  

 

Theorem 3.5. Let =

EV  be the set of efficient point of =V  then EE VV == . 

Proof. Suppose that =),( EVYX   but ),( YX  does not belong to EV , then by the definition of 

EV , there exists a point Vv   such that ),(> YXv  . Since Vv  , there exists a point 

vTYX  ),(  such that ),( YXv  , therefore ),(<),( YXYX  . This contradicts 

=),( EVYX  , therefore EVYXv  ),(= . 

Now suppose EVv , to show that =

EVv , we show that ),(= YXv   for some vTYX ),(  and 

EFYX  ),( (efficient points of outcome set for MOLP). Since Vv , Therefore ),( YXv   

for some vTYX ),( , since EVv  and VYX  ),(  then ),(= YXv  . Let vTYX  ),(  satisfy 

),(),( YXYX  , ),(),( YXYX  , then by the definition of V , since ),(< YXvAL  , we 

have VYX  ),( , then ),(= YXv   does not belong to EV , but this is a contradiction, 

therefore, =

EVv . ∎ 

 

Let  

 .),,,,,(..

max=

11

1=1=

vsm

i

m

i

r

s

r

Tyyxxts

xy








                  (3)       

By Theorem (3.3),   is a finite number. If ),( YX  is an optimal solution of (3) , then ),( YX  

is an efficient solution of (2) (we solve problem (2)  by the weighted-sum problem method (by 

choosing smjwj ,1,=1,=  ), see, Zeleny [48, 49]). 

For smjsmi  ,1,=,,1,=  , we put 
AL

sm vvYXvvvq <ˆ),ˆ,ˆ(=)ˆ,,ˆ(=ˆ= 1

0  , and

),,,,,(= 21

j

sm

j

i

jjj qqqqq   such that, i

j

i vq ˆ=  for ji   and 

)ˆˆ(ˆ=ˆˆ=
1=1=1= i

m

ir

s

rjj

sm

jj

j

i xyvvvq  


  for ji = . 
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Theorem 3.6. The Convex hull of },1,,{ 0 smqqq   is an sm -dimensional simplex and 

contains V . 

Proof. First we show that },1,,{ 0 smqqq   is a affinely independent. Since 0=)( i

oj qq   for 

ji   and i

m

ir

s

ri

oj xyqq ˆˆ=)(
1=1=     for ji = , smjsmi  ,1,=,,1,=  , we put 

i

m

ir

s

r
xy ˆˆ=

1=1=   , therefore, 0> (by the definition of  , this is evident), Let 

0=)( 0

1=
qqc j

j

sm

j



 then 0=),,,(=)( 21

0

1=
 sm

j

j

sm

j
cccqqc 


  ; since 0 , therefore, 

0=jc , smj ,1,=   and },1,,{ 0 smqqq   is a affinely independent. 

To show that the convex hull contains V , suppose Vv . Since },,1{ 00 qqqq sm    is a 

Linearly independent set, hence it is a basis for smR  ; therefore, there is ),,(= 1 sm

T

  , 

smjj  ,1,=0,   such that )(= 0

1=

0 qqqv j

j

sm

j
 


 . If 1>

1= j

sm

j



, we have 

 >=)(=)(
1=1=

0

1= j

sm

jj

sm

jj

sm

j
qv 


 , but we have 

 =ˆˆ=ˆmax=)(max)(
1=1=1=1=

0

1=

0

1= i

m

ir

s

rj

sm

jj

sm

jj

sm

jj

sm

j
xyvvqvqv  


, 

which contradicts the previous paragraph. Hence, 1
1=




j

sm

j
  and 

j

j

sm

jj

sm

j
qqv  




1=

0

1=
)(1=  , therefore, Sv (S is the convex hull of }),1,,{ 0 smqqq  . We 

showed that SV  . ∎ 

 

Theorem 3.7. S  may also be written as following. 

S = }.),,(<)ˆ,ˆ(|),{(
1=1=

 

i

m

ir

s

r

sm xyYXYXRYX  

 Proof. Suppose that Sv , then 

.=)ˆ,ˆ(>),,,(

)ˆ,ˆ(=)(=)(1==

0

21

0

1=

0

0=

0

1=0=

qYX

YXqqqqqqv

sm

j

j

sm

jjj

sm

jj

sm

jjj

sm

j
















  

Therefore )ˆ,ˆ(> YXv  . On other hand, we have  


==
1=1= j

sm

jj

sm

j
v , therefore 

}.),ˆ,ˆ(>),(|),{(
1=1=

 

i

m

ir

s

r

sm xyYXYXRYXv  

Now suppose that }.),ˆ,ˆ(>),(|),{(),(
1=1=

 

i

m

ir

s

r

sm xyYXYXRYXYX  Let 

)
ˆ

(=



jj

j

xx 
, mj ,1,=  , sj

yy jj

jm ,1,=),
ˆ

(= 





 , 10  j , then 

).
ˆ

()
ˆ

(=
1=1=1= 


jjs

j

jjm

jj

sm

j

yyxx 






 We have 0>ˆ0,>ˆ

jjjj xxyy  , but 

 =)ˆˆ(<)ˆˆ(
1=1=1=1=1=1= j

m

jj

s

jj

m

jj

s

jj

m

jj

s

j
xyxyxy   , therefore 

1.<)
ˆ

()
ˆ

(=
1=1=1= 


jjs

j

jjm

jj

sm

j

yyxx 






 

By the definition of jq , smj ,1,=  , we have 
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)( 0

1=

0 qqq j

j

sm

j



 = ),,,( 21

0  smq   =

)
ˆ

,,
ˆ

,
ˆ

,,
ˆ

()ˆ,ˆ( 1111


 ssmm yyyyxxxx

YX


   =

),(=)ˆ,ˆ(),()ˆ,ˆ( YXYXYXYX  , then j

j

sm

jj

sm

jjj

sm

j
qqqYX  




1=

0

1=0=
)(1==),(

, therefore SYXv  ),(= . ∎ 

 

Theorem 3.8. Let )(),( VIntYX pp   and suppose )ˆ,ˆ(>),( YXYX  , ),( YX  does not 

belong to V , and ))()),(((=),( YYYXXXYX pp

ww    , where   is the solution of 

problem (4) then WE

ww VYX  ),( .  

 

 
.))()),(((..

max

VYYYXXXts pp  


      (4) 

 

Proof. Suppose ),( ww YX  does not belong to WEV . Then we may choose a point VYX  ),( 00  

such that ),(>),( 00

ww YXYX  . Since IntVYX pp  ),( , then )ˆ,ˆ(>),( YXYX pp  , on other 

hand, we have )ˆ,ˆ(>),( YXYX   then )ˆ,ˆ(>),( YXYX ww  . 

Put ){(min= 01

w

rr yyd  , misrxx w

ii ,1,=,,1,=|)( 0  }, 

},1,=,,1,=|)ˆ(),ˆ{(min=2 misrxxyyd i

w

ir

w

r  . Choose 0>  such that 1< d  and 

2< d . Let }<),(),(|),{(=),( 
wwsmww YXYXRYXYXN   . Suppose 

),( ww YXNZ    then  << w

rr yz  ,   w

rr

w

r yzy << . Since 1< d  then 

>0

w

rr yy   and >ˆ
r

w

r yy   therefore 0<<ˆ
rrr yzy , mir ,1,=,1,=  . Therefore VZ . 

Similarly we show that 0<<ˆ
iri xzx  , mi ,1,=  . We conclude that VYXN ww  ),( . Since 

0> , this contradicts the fact that ),( ww YX  belong to the boundary of V (consider problem 

(4)) so the proof is complete. ∎ 

 

From Rockafellar [40] and Yu [48] and the weighted-sum problem, F  is a face of V  if and only 

if F  is equal to the set of the optimal solution set of following problem  

 

.),,,,,,,(..

max

2121

1=1=

vsm

isi

m

i

rr

s

r

Tyyyxxxts

xuyu



 


  (5) 

 for some ms

mssss Ruuuuuu 

 ),,,,,,,( 2121  .  

The variable vector ),,,,,,,( 2121 mssss uuuuuu   expresses the corresponding multiples of the 

output and input vector (𝑦1, … , 𝑦𝑠, 𝑥1, … , 𝑥𝑚). 

We know that ),( ww YX  is weak efficient unit if and only if the optimal value of the following 

problem is zero. (It is the clear).          
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0.,),(

),(),(..

max





tTYX

YXetYXts

t

v

ww            (6) 

  

The dual of the linear program (6) is as follows: 

 

.,1,=0,0,

0

1

,1,=0

,1,=0..

min

1

1=1=

1=1=

1

1=1=

smjvu

vxvyv

uu

mivu

srvuts

vxuyu

jj

sm

j

isi

m

i

j

rr

s

r

si

m

i

r

s

r

isis

rr

sm

w

isi

m

i

w

rr

s

r

































            (7) 

  

By the duality Theorem of linear programing, since the optimal value of (6) is zero, problem (7) 

also has an optimal value of zero, therefore 

0=11=1=









  sm

w

isi

m

i

w

rr

s

r
vxuyu  and  0),,,,,,,( 2121 













mssss uuuuuu  , 

0),,,,,,,( 2121 













mssss uuuuuu  , From Falk and Hoffman [23], we know that the optimal 

values of problem (5) correspond to weakly efficient faces of V  for 

),,,,,,,(=),,,,,,,( 21212121















 mssssmssss uuuuuuuuuuuu  . Inequality 

011=1=
 







  smisi

m

irr

s

r
vxuyu , construct inequality cuts needed in the outer approximation 

algorithm for generating all efficient extreme points of V . 

 
 

4. Generating All Efficient Extreme Points of the production 

possibility set 
 
We apply the outer approximation algorithm for generating all efficient extreme points of the 

outcome set of problem (2). In what follows, all efficient extreme points of the production 

possibility set of the DEA with VRS are essentially immediately available upon termination of the 

algorithm, by converting points ),( YX  in the outcome set of problem (2) to equivalent points 

),( YX  in vT . 

 

The Outer Approximation Algorithm applied as follows: 

Initialization step. Compute a point )(),( VIntYX pp  . sm

pp EYX  ),(  may be set equal to 

any strict convex combination of ALv  and ),(  YX , where ),(  YX  is any optimal solution 

to the linear program (6) with ALALALww vYXYX =),(=),(   and construct the sm

-dimensional simplex SS =0  containing V  described in Theorems (3.6) and (3.7). Set 𝑆 is a 
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𝑚 + 𝑠-dimensional simplex consisting of the vertices of V , as described in Theorems (3.6). 

Store both the vertex set S  given in Theorem (3.6) inequality representation of SS =0  given in 

the Theorem (3.7). Set 0=k  and go to iteration k . Iteration k , 0k , See Steps 1 through 4  

below. 

 

Step 1). If, all vertexes of kS  belong to V , then stop VS k = . Otherwise, choose any vertex of 
kS  such that, it does not belong to V , for example ),( kk YX  and continue (To test a given 

),( kk YX  is membership in V , one may apply the phase-I procedure of the simplex method to 

problem (6) by putting )),(=),( kkww YXYX  . 

 

Step 2). Compute ),( ww YX  description in the Theorem (3.8) by putting 

),(=),( kk YXYX  . 

 

Step 3). Set }|),{(= 11=1=

1 







   smisi

m

irr

s

r

smkk vxuyuRYXSS  where 

),,,,,,,( 2121















mssss uuuuuu   is any dual optimal solution to the linear programing (6) with 

),( ww YX  that have been calculated in the step (2). 

 

Step 4). Using vertexes of kS  and method that it supposed by Falk and Hoffman [23] and 

definition of 1kS  given in Step (3), determine all vertexes of 1kS  , set 1= kk  and go to 

iteration k. 

 

By definition of 1kS  in step (3) since ),( kk YX  don’t belong to 1kS  and 1 kSV , we 

conclude that algorithm generates distinct polyhedral jS , kj 0,1,=  so that 
011 ,, SSSSV kk    . This implies that the algorithm must be finite and it must terminate 

in some iteration 0k . 𝑆𝑘 is a 𝑚 + 𝑠-dimensional simplex including the vertices of V , formed 

in each stage 𝑘. 

 

Theorem 4.1. Let 0k  denote the iteration number in which VS k =  and the outer 

approximation algorithm terminate. Let 

),(|),{(= YXYXE   belong to vertexes set of kS  and )}ˆ,ˆ(>),( YXYX   

then E  is identical to the set of all efficient extreme points of =V . 

Proof. From before we have 

)(}),ˆ,ˆ(>),(|),{(== 1

0=1=1= n

k

ni

m

ir

s

r

smk HxyYXYXRYXVS     . And, for 

1,0,1,= kn  , }),(0,|),{(= 11=1= v

n

smi

n

is

m

ir

n

r

s

r

sm

n TYXvxuyuRYXH  

  .

),,,,,( 11

n

ms

n

s

n

s

n uuuu    is any dual optimal solution to the linear programing (6) with 

),( ww YX  in step 3). Notice also that 

WEv

n

smi

n

is

m

ir

n

r

s

r

sm VTYXvxuyuRYX  

  }),(0,|),{( 11=1=
. 

Suppose that EYX  ),( , then ),( YX  are belong to vertex set of VS k =  and  
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)ˆ,ˆ(>),( YXYX  , therefore at last, sm  of the inequalities below, must hold as equations at 

),(=),( YXYX  . n

smi

n

is

m

ir

n

r

s

ri

m

ir

s

r
vxuyuxy 11=1=1=1=

,     , 1,0,1,= kn  . That 

implies that WEVYX  ),( .  We show EVYX  ),( , by contradiction, suppose ),( YX  dose 

not belong to EV , therefore, there is ),( YX  such that ),(),( YXYX  , ),(),( YXYX  . 

Let }=|{=11 jj yyjI , }|{=12 jj yyjI  , }=|{=21 jj xxjI , }|{=22 jj xxjI  . 

For 12Ij , let 0>= jjj yyn   and for 22Ij , let 0>= jjj xxm  . 

We choose 0>M  such that j

j

j y
M

n
y ˆ> , j

j

j x
M

m
x ˆ<  and define j

new

j yy = , for 11Ij  and 

M

n
yy

j

j

new

j = , for 12Ij  and j

new

j xx = , for 21Ij  and 
M

m
xx

j

j

new

j = , for 22Ij . Then 

0>= jjj yny  , for jj yyIj =,11 , 12Ij , and 0>= jjj xmx  , for 21Ij , and jj xx = , 

for 22Ij . 

Then j

new

jj y
M

y
M

M
y

1

1

1
=





, j

new

jj x
M

x
M

M
x

1

1

1
=





 therefore 

),(
1

),(
1

1
=),( newnew YX

M

M
YX

M
YX 





 . We have 1<

1

1
<0

M
 then ),( YX  is a strict 

convex combination of VYX  ),(  and VYX newnew  ),( , that is contradiction (because 

),(= YXv   is belong to vertex set of kSV = ). Therefore EVYX  ),( , from Theorem (3.5), we 

have =),( EVYX  . Since VV =
 then ),( YX  is an efficient extreme point of =V . 

Now suppose that ),( YX  is a efficient extreme point of =V  and ),( YX  don’t belong to all 

efficient extreme points of kSV = , therefore, we choose VYXYX  ),(),,( 2211  and R , 

1<<0   so that ),)((1),(=),( 2211 YXYXYX   . By solving problem (2) by 

weighted-sum problem method(see, Zeleny [49]), and from Theorem (3) in Benson [7], we 

conclude that ),( YX  is an efficient extreme point of the polyhedron =V .  

We may select a point 
sm

mssss Ruuuuuu 

 ),,,,,,,( 2121 
,   

0>),,,,,,,( 2121 mssss uuuuuu   , such that ),( YX  

is the unique optimal solution to the following problem  

.),,,,,,,(..

max

2121

1=1=

Vyyyxxxts

xuyu

sm

isi

m

i

rr

s

r



 
     (8) 

From the definition of V , this implies that ),( YX  is also the unique optimal solution to the 

problem (8). Since VYXYX  ),(),,( 2211 ,therefore 

isi

m

irr

s

risi

m

irr

s

r
xuyuxuyu   

1=1=

1

1=

1

1=
<  and 

isi

m

irr

s

risi

m

irr

s

r
xuyuxuyu   

1=1=

2

1=

2

1=
< . 

Since 1<<0   these inequalities imply that 
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isi

m

irr

s

risi

m

irr

s

risi

m

irr

s

r
xuyuxuyuxuyu   

1=1=

2

1=

2

1=

1

1=

1

1=
<))((1)(  . 

Since ),)((1),(=),( 2211 YXYXYX    the left-hand-side of the previous inequality 

equals isi

m

irr

s

r
xuyu  

1=1=
, yielding a contradiction. Therefore, ),( YX   belong to all efficient 

extreme points of kS  must be true, so that the proof is complete. ∎ 

 

5.  Application and discussion 

  

In this section, we illustrate the problem by two numerical example. 

  

Example 1. 

Consider the case where there are seven units with an input and an output whose details have been 

given in the following Table. 

 

  

 Table 5.1 Input and output of the seven DMUs.   

   1DMU    2DMU   3DMU   4DMU    5DMU    6DMU    7DMU   

Input  1  1  2   4   5   6  3 

Output  1  3  5   6   7   8  2 
*

BCC   1  1  1   0.83   0.93   1  0.33 

Efficiency 

status 

 non-extreme  extreme  extreme   -   -   extreme  - 

 

  

 The corresponding MOLP is  

0.0,

00,0,0,0,0,0,

1=

0287653

036542.

),(max

11

7654321

7654321

17654321

17654321

11













yx

y

xts

yx








 (9) 

 

 Where the efficiency frontier of production possibility set of above example is shown in Figure 

5.1.  

In the initialization step of the algorithm, we have 6=,7}1,=|{max= 11  jxv jAL , 

1=,7}1,=|{min= 12 jyv jAL  then ALv = 6,1)(=),( 21 vv . We select 6.5,0.5).(=)ˆ,ˆ(  YX  By 

definition of V , we have 111221 6.5,0.5|),{(= xvyvvvV  , for some ),( 11 yx  belonging 

to the feasible region of problem (9)}. 
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Figure 5.1: The efficiency frontier of production possibility set.  

 

 

 Put 1=k . If we solve problem (3), we would obtain 3= . 

Therefore 1111

0 6.5,0.5|),{(= xyyxS  , 3}11  xy . As shown in Figure 5.2. 

 

  
Figure 5.2: The 0S set in ),( 11 yx  space.  

   

The vertexes set of 0S  given in Theorem (3.6) are (2.5,0.5)}6.5,9.5),(6.5,0.5),{(   

which are computed as follows: 

6.5,=9.5,=6)(0.53=2.5,=66.53=0.5,=6.5,0.5),(= 2

1

2

2

1

1

1

2

0  qqqqq  . Therefore 

(2.5,0.5)=1q  and 6.5,9.5)(=2 q .  

In step (1) of the algorithm, since (-6.5,9.5) does not belong to V , we put 

6.5,9.5)(=),( 11  YX . We go to step (2). If we solved problem (6) by ),( ww YX = ALv =

6,1)(=),( 21 vv  we would obtain (2,5,4)=),,(  tyx . We put
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6,1)0.5(2,5)0.5(=),0.5(),0.5(=),( 21   ALAL

pp vvyxYX , then 4,3)(=),(  pp YX . Now, 

we solved problem (4), we put 6.5,9.5)(=),(=),( 11  YXYX  and 4,3)(=),(  pp YX , we 

would obtain 0.76=  and 5.9,7.92)(=),(  ww YX . 

As shown in Figure 5.3. We solved problem (7) by 5.9,7.92)(=),(  ww YX , we would obtain 

0.57=1

u  2=0.43,= 32

 vu , then the inequality cut is as follows. 

20.430.57 11  xy . 

We go to step (3) and we organize

2}.0.433,0.57,6.5,0.5|),{(= 11111111

1  xyxyxyyxS  As shown in Figure 5.4. 

The vertex set of 1S  given in the Theorem (3.6) are }6.5,8.375)((2.5,0.5),2,5),(6.5,0.5),{( 

We put 2=k . Since (-6.5,8.35) does not belong to V , we put 6.5,8.375)(=),( 22  YX . 

 

 
Figure 5.3: ),( pp YX , ),( ww YX , and ALv  in ),( 11 yx  space.  

 

 
Figure 5.4: The 1S  and 2S  sets in ),( 11 yx  space.  
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In the next step, we solved problem (4), we put 6.5,8.375)(=),(=),( 22  YXYX  and 

4,3)(=),(  pp YX , we would obtain 0.924=  and 6.326,8)(=),(  ww YX . We solved 

problem (7) by 6.326,8)(=),(  ww YX , we would obtain 8=0,=1,= 321

 vuu , then the 

inequality cut is as follows. 

81 y . 

We go to step (3) and we organize 

8}2,0.433,0.57,6.5,0.5|),{(= 111111111

2  yxyxyxyyxS . As shown in Figure 

.5.4. The vertexes set of 2S  given in Theorem (3.6) are 

6,8)}(6.5,8),((2.5,0.5),2,5),(6.5,0.5),{(  . We put 3=k . Since (2.5,0.5) does not belong to 

V , we put (2.5,0.5)=),( 33 YX . 

 

 

 
Figure 5.5: The 3S  and 4S  set in ),( 11 yx  space.  

 

In the next step, we solved problem (4), we put (2.5,0.5)=),(=),( 33 YXYX   and 

4,3)(=),(  pp YX , we would obtain 0.462=  and 1,1.8462)(=),(  ww YX . We solved 

problem (7) by 1,1.8462)(=),(  ww YX , we would obtain 1=1,=0,= 321  vuu , then the 

inequality cut is as follows. 

11 x . 

We go to step (3) and we organize 

1}8,2,0.433,0.57,6.5,0.5|),{(= 1111111111

3  xyxyxyxyyxS . As shown in 

Figure 5.5. The vertexes set of 3S  given in Theorem (3.6) are 

6.5,8)}(6,8),(2,5),(1,0.5),(1,4),(6.5,0.5),{(  . We put 4=k . Since (-1,4) does not belong 

to V , we put 1,4)(=),( 44  YX . 

In the next step, we solved problem (4), we put 1,4)(=),( 44  YX  and 4,3)(=),(  pp YX , we 

would obtain 0.8572=  and 7)1.429,3.85(=),(  ww YX . We solved problem (7) by 

7)1.429,3.85(=),(  ww YX , we would obtain 0.3333=0.6666,=0.3333,= 321

 vuu , then the 

inequality cut is as follows. 
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12 11  xy . 

We go to step (3) and we organize 

1}21,8,2,0.433,0.57,6.5,0.5|),{(= 111111111111

4  xyxyxyxyxyyxS . As 

shown in Figure 5.5. The vertexes set of 4S  given in Theorem (3.6) are 

6.5,8)}(6,8),(2,5),(1,0.5),(1,3),(6.5,0.5),{(    

Since (-6.5,0.5), (-1,0.5) and (-6.5,8) have the same components to 6.5,0.5)(=)ˆ,ˆ(=ˆ  YXV , then 

they do not belong to =V . Therefore, the vertexes set of =

EV  are as follows. 

6,8)}(2,5),(1,3),{(  . 

We obtain the vertexes set of vT  by converting ),( 11 yx  to ),( 11 yx  as follows: 

(6,8)(2,5),(1,3), .  

 

Example 2. 

Consider the case where there are five units with an input and two outputs whose details have been 

given in the following Table. 

 

  

 Table 5.2. The input and outputs of the first DMUs.   

   1DMU    2DMU   3DMU   4DMU    5DMU   

Inputs  1  1  1  1  1 

Output1  6  5  2   3   2  

Output2 2 3.5 5 3.5 2 
*

BCC   1  1  1   0.833   0.5  

Efficiency 

status 

extreme  extreme  extreme   -   -  

 

  

 The corresponding MOLP is  

0.,00,

00,0,0,0,

1=

025.355.32

023256

0.

),,(max

211

54321

54321

254321

154321

154321

211















yyx

y

y

xts

yyx









 (10) 

 

 In the initialization step of the algorithm, we have 1=,5}1,=|{max= 11  jxv jAL , 

2=,5}1,=|{min= 12 jyv jAL , 2=,5}1,=|{min= 23 jyv jAL   then ALv =

2),1,2(=),,( 321 vvv . We select 5)..1,1.51.5,(=)ˆ,ˆ(  YX  By definition of V , we have 

231211321 1.5,1.5,1.5|),,{(= yvyvxvvvvV  , for some ),,( 211 yyx  belonging to 

the feasible region of problem (10)}. 
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 Put 1=k . If we solve problem (3), we would obtain 5.7= . 

Therefore 121211

0 1.5,,1.51.5|),,{(= xyyyyxS  , 5}.7121  xyy .    

The vertexes set of 0S  given in Theorem (3.6) are 

}7.5),1.5,1.5(1.5),,1.5,7.5(1.5),,1.54.5,(1.5),,1.5,1.5{(   

which are computed as follows: 

.7.5=(1.5)1.55.7=,1.5=,1.5=,1.5=

7.5,=(1.5)1.55.7=,1.5=,1.5=1.5,=,4.5=5.11.55.7=1.5),,1.5,1.5(=

3

3

3

2

3

1

2

3

2

2

2

1

1

3

1

2

1

1

0





qqqq

qqqqqq

 Therefore 1.5),,4.5,1.5(=1 q 1.5),1.5,7.5(=2 q  and 7.5),1.5,1.5(=3 q .  

In step (1) of the algorithm, since 1.5),1.5,7.5( does not belong to V , we put 

1.5),1.5,7.5(=),( 11  YX . We go to step (2). If we solved problem (6) by ),( ww YX = ALv =

2),1,2(=),,( 321 vvv , we would obtain 6,2,0),1(=),,(  tyx . We put

2),1,2(0.52),1,6(0.5=),,0.5(),0.5(=),( 321   ALALAL

pp vvvyxYX , then 

2),1,4(=),(  pp YX . Now, we solved problem (4), we put 

5).1,7.51.5,(=),(=),( 11  YXYX  and 2),1,4(=),(  pp YX , we would obtain 0.571=  

and 715).1,6286,.1(=),(  ww YX . 

We solved problem (7) by 715).1,6286,.1(=),(  ww YX , we would obtain 0,=,1= 21

 uu

6=0,= 43

 vu , then the inequality cut is as follows. 

61 y . 

We go to step (3) and we organize

6}.5,.7,1.5,1.5,1.5|),,{(= 1121121211

1  yxyyxyyyyxS   

The vertex set of 1S  given in the Theorem (3.6) are }7.5),1.5,1.5(1.5),,6(0,1.5),,1.5,1.5{(    

We put 2=k . Since 7.5),1.5,1.5( does not belong to V , we put 7.5),1.5,1.5(=),( 22  YX . 

In the next step, we solved problem (4), we put 7.5),1.5,1.5(=),(=),( 22  YXYX  and 

2),1,4(=),(  pp YX , we would obtain 0.471=  and 591).4,823.2236,.1(=),(  ww YX . 

We solved problem (7) by 591).4,823.2236,.1(=),(  ww YX , we would obtain 

,
3

2=,
3

1= 21

 uu 4=0,= 43

 vu ,  then the inequality cut is as follows. 

122 21  yy . 

We go to step (3) and we organize

12}.2,65,.7,1.5,1.5,1.5|),,{(= 211121121211

2  yyyxyyxyyyyxS  

The vertexes set of 2S  given in Theorem (3.6) are 

}4.5),(0,3.55.25),,5.1(0,3),,1.5,6(1.5),,1.5,1.5{(  . 

We put 3=k . Since 3),1.5,6( does not belong to V , we put 3),1.5,6(=),( 33  YX . 

In the next step, we solved problem (4), we put 3),1.5,6(=),(=),( 33  YXYX and

2),1,4(=),(  pp YX , we would obtain 0.75=  and 75).2,5.5375,.1(=),(  ww YX . We 

solved problem (7) by 75).2,5.5375,.1(=),(  ww YX , we would obtain 4,.0=,6.0= 21

 uu

,4.4=0,= 43

 vu then the inequality cut is as follows. 
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4.44.06.0 21  yy . 

We go to step (3) and we organize  

}.4.44.06.0

,122,65,.7,1.5,1.5,1.5|),,{(=

21

211121121211

3





yy

yyyxyyxyyyyxS
 

The vertexes set of 3S  given in Theorem (3.6) are 

}1.5),5.11.5,(,4.5),3(0,5.25),,5.1(0,2),,60.5,(3.5),,51,{(  . 

We put 4=k . Since 5.25),5.1(0, does not belong to V , we put 5.25),5.1(0,=),( 44 YX . 

In the next step, we solved problem (4), we put 5.25),5.1(0,=),( 44 YX  and

2),1,4(=),(  pp YX , we would obtain 0=  and 2),4,1(=),(  ww YX . We solved problem 

(7) by 2),1,4(=),(  ww YX , we would obtain 0,=,0= 21

 uu ,1=1,= 43  vu then the 

inequality cut is as follows. 

11  x . 

}.1,4.44.06.0

,122,65,.7,1.5,1.5,1.5|),,{(=

121

211121121211

4





xyy

yyyxyyxyyyyxS
 

The vertexes set of 4S  given in Theorem (3.6) are 

}1.5),5.11.5,(5.25),,5.11,(2),,61,(3.5),,51,{(  . 

We put 5=k . Since 5.25),5.11,( does not belong to V , we put 5.25),5.11,(=),( 55  YX . 

In the next step, we solved problem (4), we put 5.25),5.11,(=),( 55  YX and

2),1,4(=),(  pp YX , we would obtain 923.0=  and 5),693.1,1(=),(  ww YX . We solved 

problem (7) by 5),693.1,1(=),(  ww YX , we would obtain 1,=,0= 21

 uu ,2=0,= 43

 vu then 

the inequality cut is as follows. 

22 y . 

}.2,1,4.44.06.0

,122,65,.7,1.5,1.5,1.5|),,{(=

2121

211121121211

5





yxyy

yyyxyyxyyyyxS
 

The vertexes set of 5S  given in Theorem (3.6) are 

}1.5),5.11.5,(5),,21,(2),,61,(3.5),,51,{(   

Since 1.5),5.11.5,(  has the same components to )1.5,5.11.5,(=)ˆ,ˆ(=ˆ  YXV , then they do 

not belong to =V . Therefore, the vertexes set of =

EV  are as follows. 

}5),21,(2),,61,(3.5),,51,{(  . 

We obtain the vertexes set of vT  by converting ),,( 211 yyx  to ),,( 211 yyx  as follows: 

}5),2(1,2),,6(1,3.5),,5{(1, . 

 

6. Computational Experiment and statisical analysis 

To conduct a preliminary computational experiment for our proposed approach, we can use the 

preliminary VS-Fortran code to execute the outer linear approximation algorithm, see Benson [8]. 

The Horst-Thoai–De Vries method [29] is used to execute the fourth step of the algorithm; the 

linear bisection method is used for our univariate search in the second step, and to solve the linear 

programming problem, we use the simplex algorithm; as implemented by the subroutines of 
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IMSL. [51]. Benson [8] has provided the number of iterations and efficient extreme points and the 

CPU introduction times for thirty multiple objective linear programming problems with different 

dimensions. In the present research, we use the Gams software to solve our DEA models and the 

Lindo software is used for solving the linear programming problems. Note that in order to 

determine the efficient extreme points using traditional DEA models, we need to solve at least 𝑛 

models, which is difficult to do; it would also be quite difficult to obtain information related to the 

efficient surfaces. However, in this article, we arrive at all the efficient extreme points by solving 

only one MOLP model, and the model is not dependent on the unit under evaluation. The m+s+n 

model is variable in the decision set and the number of m+s is variable in the outcome set. Now, 

the outcome set is smaller and we can convert the efficient extreme points in this set to efficient 

extreme points in the decision set through a simple calculation; thus, using the presented 

algorithm, we can determine the efficient extreme points of the production possibility set and its 

efficient surfaces by solving one model and a few iterations of the algorithm. In the numerical 

example provided, we use the model to evaluate seven decision-making units (DMUs) under VRS 

technology, each having one input and one output. In the one example, there are 9 variables in the 

decision set and 2 variables in the outcome set; we obtained all efficient extreme points after four 

iterations of the algorithm. In the third step of the algorithm, we solve a linear programming 

problem to find the optimal values of 𝜆∗ , and to form the cutting-plane equations, a linear 

programming problem is solved in each stage. As can be observed, this method involves fewer 

calculations for finding the extreme points compared to traditional DEA models, which require 

solving 𝑛 models for the same purpose. For the example 2, we have similar interparation. The 

statisical analysis of examples discriped in Table 6.1. 

 

Table 6.1. The statisical analysis of examples.  
Example The number 

of 

Inputs and 

outputs 

The number 

of 

DMUs 

The number of 

variables in 

feasible region  

The number of 

efficient 

extreme points 

in feasible 

region  

The number of 

efficient 

extreme points 

in outcome 

space 

The number of 

algorithm 

iterations  

The number 

of 

Solved LPs 

Example 1 2 7 9 84 3 4 9 

Example 2 3 5 8 70 3 5 12 

 

The presented algorithm has many useful computational advantages to previous approaches for 

determining the efficient extreme points of the production possibility set: 

1. Since the algorithm produces all efficient extreme points of the outcome set based on the 

decision set and the outcome set is smaller than the decision set, fewer calculations are 

needed for finding these points. 

2. The proposed algorithm is precise and finite; thus, through solving one MOLP model and a 

number of iterations, we can arrive at all efficient extreme points and efficient surfaces. 

3. This algorithm does not face the issues of previous algorithms in producing the efficient 

extreme points, such as infeasibility and degeneracy. 

4. The presented approach makes a new connection between DEA and MOLP problems; in 

this regard, we can identify all efficient surfaces by solving one MOLP problem and 

multiple iterations of the algorithm. 

5. The presented approach can be a new method for obtaining all efficient extreme points. 
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7.  Conclusion 
 
The purpose of this paper was to develop a new method for generating efficient extreme points 

of the production possibility set with VRS. We proposed an MOLP problem whose feasible region 

same of is production possibility set. We applied the outer approximation algorithm for generating 

the efficient extreme points of MOLP problem. Since the average number of efficient extreme 

points in the outcome set is less than the average number of efficient extreme points in the decision 

set, the method proposed is pretty fit. We obtain the efficient frontier by solving an MOLP 

problem, the outer approximation algorithm can be implemented relatively easily by using search 

methods, linear programming techniques, and any one of several special methods from the global 

optimization literature for generating new vertexes set as linear inequality cuts are added to the 

containing polyhedral generated by the algorithm. This algorithm used few calculations to produce 

all the extreme points. The results of this paper can be used on various DEA-related application 

problems. The results proposed a way for extending the analysis of production efficiency to further 

path. In this method, we obtain the efficient frontier by solving an MOLP problem. 

For future research, we suggest extending our presented approach to determine the units’ return to 

scale class; furthermore, we can solve the proposed MOLP problem using other methods for 

obtaining extreme points, such as vector maximization and make a comparison of results. 
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