 Using the Outer Approximation Algorithm For Generating All Efficient Extreme Points of DEA

 J. Gerami[footnoteRef:1] [1: Corresponding Author: Geramijavad@gmail.com]

Department of mathematics, Shiraz Branch, Islamic Azad University, Shiraz, Iran.

 Abstract. Identifying the efficient extreme units in a production possibility set is a very important matter in data envelopment analysis, as these observed, real units have the best performances. In this paper, we proposed a multiple objective programming model, in which the feasible region is the production possibility set under the assumption of variable returns to scale and the objective function consists of input and output variables. As we know, by increasing the dimensions of the problem, the set of efficient points would increase as well; thus, using the multiple objective linear programming problem-solving methods in a decision set would lead to computational problems and it would be much easier to work in the outcome set instead of the decision set. In this research, we show that the efficient points in the outcome set of the suggested multiple objective linear programming problems correspond with the efficient extreme points in data envelopment analysis. An outer approximation algorithm is presented for production of all efficient extreme points in the outcome set. This algorithm provides us with the equations for all efficient surfaces. In the outcome set, this algorithm would use few calculations to produce all the extreme points. Finally, we demonstrate the presented approach through numerical examples.

Keywords: Data Envelopment Analysis, Multiple objective, linear programming, Outer approximation.

[bookmark: GrindEQpgref4ae1cb3f1]1. Introduction

Data envelopment analysis (DEA) developed by Charnes et al. [12] has become one of the most widely used methods in operations research/management science. A reason for this success is that DEA is a task-oriented approach and focuses on an important task: to evaluate the relative (technical) efficiency of comparable Decision Making Units (DMUs) essentially performing the same task. Based on information about existing data on the performance of the units and some preliminary assumptions, the purpose of DEA is to empirically characterize the so-called efficient frontier (surface) based on the set of available DMUs and to project all DMUs onto this frontier. If a DMU lies on the frontier, it is referred to as an efficient unit, otherwise inefficient. Efficiency evaluation is based on the data available without taking into account the decision-makers (DM) preferences. All efficient DMUs are considered equally “good”. However, if the efficient units are not equally preferred by the decision-makers it is necessary to somehow incorporate the decision-maker's judgments or a priori knowledge into the analysis. A straightforward and widely used method has been to restrict possible values of the multipliers of so-called dual DEA models. Approach is to explicitly or implicitly gather direct preference information about the desirable input and output-values of DMUs, and insert that information in a form or another into the analysis. DEA is a technique based on mathematical programming for evaluating the relative efficiency of a set of decision-making units (DMUs). The efficiency of each DMU is determined by the efficiency frontier. The units on the efficiency frontier are assumed efficient; otherwise, they are considered as inefficient. In fact, DEA sets up a production possibility set and considers its frontier as the efficient frontier made according to the non-domination condition, see, for instance DE Witte and Marques (2010).
For this approach, some ideas can be adopted from research carried out in the field of Multiple Criteria Decision Making (MCDM), especially in Multiple Objective Linear Programming (MOLP). In MCDM /MOLP, one of the key issues is to provide a decision-makers with a tool, which makes it possible to evaluate points lying on the efficient frontier. It has been shown that the MOLP and DEA models have a similar structure, see, for instance Hosseinzadeh Lotfi et al. [29]. Thus, theory and approaches developed in MOLP for evaluating solutions on the efficient frontier can also be applied in DEA.
This is important that because the dimension of the outcome set is smaller than m+s and the dimension of the decision set is n+m+s-1, generating all or portion of outcome set is expected, in general, to be less the demanding computationally than generating all or portions of the decision set. The identification of DEA efficient units under various DEA models is equivalent to the identification of the lowest input and the highest output solutions within the production possibility set for the corresponding multi-objective programming problem. The DEA-efficient DMU corresponds to the pareto efficient solution (or non-dominated solution). From this point of view, just as in the discussion of multi-objective programming, the set of all extreme points of variable returns to scale (VRS) models in DEA have significant values in the field of DEA, See, for instance Benson [7], Rockafellar [40]. In this article, we the use outer approximation algorithm for generating the set of all efficient extreme points of models DEA with VRS as proposed by Benson [8] and to do so, we use all efficient extreme points of the outcome set of the MOLP problem.
The organization of this paper is as follows, in section 2, we present literature review. In section 3, we present MOLP problem and its relation to models DEA with VRS, and we provide the theoretical foundation of the outer approximation procedure. We summarize some relevant results concerning efficient extreme points of the MOLP problem. Section 4, provides a detailed statement of the algorithm; additionally, a small example problem is solved for illustration purpose. Section 6, provides a computational experiment and statistical analysis. Some concluding remarks are given in the last section.

2. Literature review

In recent years, there have been a number of studies discussing the relationship between DEA and MOLP models. In their article, Doyle and Green [20] showed that DEA is an MCDM method. Alene et al. [1] used MOLP problem solving methods to apply the decision maker’s a priori knowledge in DEA problems. Golany [26] presented a data envelopment analysis model with a MOLP structure and used interactive MOLP methods to solve the model. Their model helped the decision maker (DM) to allocate a set of inputs, such as resources, on the efficiency frontier based on the level of outputs. Joro et al. [34] revealed that DEA problems have a similar structure to MOLP models; therefore, to solve the DEA models, we can use the corresponding reference point models in MOLP.
Wong et al. [46] proposed an equivalent model between DEA and MOLP and demonstrated how to solve a DEA problem interactively, without any prior judgment, by transforming a MOLP formula. Using interactive MOLP methods, they searched for the most preferred solutions (MPS) points on the efficiency frontier along with resource allocation and target setting according to the DM’s a priori knowledge; then, they used interactive approaches such as G-D-F, Steam and Stom to solve the model and finally, engaged in a comparison of results. Yang et al. [47] attempted to demonstrate the use of interactive MOLP methods for target setting in DEA and illustrated the relationship between output-oriented DEA dual models and formulation of maxmin preferred points in MOLP models; they used the interactive projected gradient approach to identify the efficient units. Malekmohammadi et al. [39] focused on the topic of target setting in DEA using MOLP problems; they extended the models presented by Yong et al [47] to simultaneously reduce the final inputs and increase the final outputs and showed that instead of solving models, we can set our targets according to the DM’s preferences by solving only one model.
Hosseinzadeh et al. [28] evaluated the relationship between output-oriented dual models in DEA and MOLP models. In their study, they showed how a DEA model can be solved interactively by transforming a MOLP formula; in this regard, they used the Z-W approach to apply the DM’s a priori knowledge in the performance process. Ebrahimnejad et al. [21] proposed an interactive MOLP method to identify the target units in DEA models in the presence of undesirable outputs; they extended the relationship between BCC models and the reference point model in MOLP toward a simultaneous and interactive increase in desirable outputs and decrease in undesirable final outputs based on MOLP models.
The main purpose of MOLP problems is to find the set of efficient solutions. These solutions are Pareto optimal solutions that can simultaneously optimize all objective functions. Among these units, the efficient extreme units are the most important ones; these would be observed, real units and their performance would determine the performance of other units in the system.
We may search for solutions also on the efficient frontier in DEA. Since the outcome set has a much simpler structure and smaller size than the decision set, a handful of researchers in recent years have begun to turn their attention to the mathematics and tools for generating all or portions of the efficient outcome set, rather than the efficient decision set, for the MOLP problem. See, for instance, Banker et al. [2], Banker et al. [3], Benson [4], Benson and Sayin [10], Dauer and Liu [17], Dauer and Saleh [18], Dauer and Gallagher [16], Dauer [14, 15].
Various methods have been presented for identification of these units, out of which we can mention the approaches proposed by Chon [13], Evans [22], Goicoechea et al. [25], Luc [38], Sawaragi et al. [41], Steuer [43], Yu [48] and Zeleny [51].
One of these approaches is the vector maximization method, see Kuhn and Tucker [37]. We can use this method to determine all efficient points in a decision set, see Benson [5], Isermann [31], Bitran [11], Villarreal and Karwan [45], Kostreva and Wiecek [36]. The problem with all those methods of determining efficient points in the feasible region and the decision set was too many calculations and the presented approaches were not convergent in most cases; in this relation, when the problem’s dimensions, variables and constraints increase, the set of efficient points would expand in MOLP problems and we would face a difficult process for finding the efficient set. Since the outcome set has a simpler form and a smaller region compared to the decision set, it would be easier to find the efficient points in the outcome, see Steuer [44], Dauer and Liu [17], Dauer and Saleh [18], Benson [4, 6], Dauer [14, 15], Gallagher and Saleh [24], Dauer and Gallagher [16], Horst et al. [30].
Therefore, instead of directly solving the DEA models, we present a DEA model with a MOLP structure and use the MOLP model’s outcome set to specify the efficient extreme units. To find the set of efficient units in the outcome set, we can employ methods such as the outer approximation algorithm [8] and the weight set decomposition algorithm [9]. In this research, we make use of the outer approximation algorithm, which is a convergent algorithm using little calculations based on linear searching and linear programming techniques. The following methods have been proposed to find DEA efficient points using efficient surfaces in MOLP.
Jahanshahloo et al. [33] presented a method for finding the piecewise linear frontier of the production function in data envelopment analysis. Korhonen [35] introduced another method to search for the efficiency frontier in DEA. In another study, Jahanshahloo et al. [32] proposed an approach for finding strongly efficient hyperplanes of the production possibility set (PPS) in data envelopment analysis. Sayin [42] presented an algorithm for determining efficient faces in DEA. Hosseinzadeh et al. [27] proposed a new method for finding the set of efficient surfaces in DEA based on MOLP models; in this relation, they introduced a linear programming model that could find the efficient defining hyperplanes of the production possibility set.
The approach proposed in the present paper is a new and distinguished method comparing to previous approaches. The advantage to our approach is that this method can determine all efficient extreme points of the production possibility set in the outcome set through little calculations.

[bookmark: GrindEQpgref4ae1cb3f2]3. Structural Similarities between MOLP and DEA

Assume that we have observed decision-making units as , where each consumes an -vector input to produce an -vector output. Suppose that and are the vectors of inputs and outputs, respectively, for , in which it has been assumed that , and , . is the reference weight for . represents the input variable vector. shows the output variable vector. We define the production possibility set of data envelopment analysis with VRS as follows:

, , , , .

We must note that the set includes all input and output vectors (X, Y) that apply to the set’s constraints.

Definition 3.1 is called an efficient point if and only if there is not an such that and

Definition 3.2 is called a weak efficient point if and only if there is not an such that .

Consider the following MOLP problem
	

 (1)

where is a matrix, , represent the multiples of the -th objective function in the MOLP problem. shows the Euclidean space. is the technology matrix including all variable multiples in problem (1). is an matrix, and rank()=, . , represents the decision-making variable vector in the MOLP problem and shows the feasible region of the MOLP problem.
The Pareto solution and weak Pareto solution of are defined as follows:

Definition 3.3 is called a Pareto solution of if there does not exist such that , .

Definition 3.4 is called a weak Pareto solution of if there does not exist so that .

Put , , ,, , is a vector whose th element is one and other elements are zero, , and

,

. , , .

Then problem is converted to

	 (2)
In model (2), vector is the variable vector for inputs and outputs; we can obtain the values of this vector by solving model (2).

Note is a feasible solution of problem (2) while is a vector belong to objective function space of problem (2).

By considering definition 3.3 is called a pareto solution of if there does not exist such that and .

Theorem 3.1. Let , then

(i) is a Pareto solution of (2) if and only if is an efficient unit in .

(ii) is a weak Pareto solution of (2) if and only if is a weak efficient unit in .

Proof. Let be a Pareto solution of . We show that is an efficient unit in . By contradiction, suppose is not an efficient unit in , then there is an such that and . Since , there is a such that is a feasible solution of . Since and , then we have a contradiction; therefore, is an efficient unit in .

Now suppose is an efficient unit in . Since , there is a such that is a feasible solution of . As is an efficient unit in , there is no such that and . Since, there is a vector for each such that is a feasible solution of . Regarding the above relations there is no that is a feasible solution of such that and . Therefore is a Pareto solution of and the proof is completed.
(ii) Proof is similar to (i).

Theorem 3.2. Let , is called the outcome set for MOLP) then dim (

Proof. Since and , , , Rank and , then dim .

Theorem 3.3. The optimal values of problem (2) are finite.

Proof. Since,, and , , , then are finite. Similarly , , and , , , then are finite, Therefore, the optimal values of problem are finite.

By using the observed DMUs, For each and , we put

.

.

Vector is called the anti-ideal point of outcome set for problem . Let satisfy , we define as follows:

, for some .

Theorem 3.4. Set is a nonempty, bounded polyhedron in of dimension .

Proof. Since , , by Theorem (3.3), the definition of implies that is a nonempty, bounded set in . We may write , where and , Since , , are polyhedral sets as proposed by Dauer and Gallagher [10], therefore is a polyhedral set. Since then show interior points set of V), by Theorem (3.2) the dimension of is , and the proof is complete.

A point is called an efficient (or admissible) point of when no exist such that and . When no exist such that , then is called a weakly efficient (or weakly admissible) point of . Let and denote the set all efficient and weakly efficient points, respectively of .

Theorem 3.5. Let be the set of efficient point of then .

Proof. Suppose that but does not belong to , then by the definition of , there exists a point such that . Since , there exists a point such that , therefore . This contradicts , therefore .

Now suppose , to show that , we show that for some and (efficient points of outcome set for MOLP). Since , Therefore for some , since and then . Let satisfy , , then by the definition of , since , we have , then does not belong to , but this is a contradiction, therefore, .

Let

	 (3)

By Theorem (3.3), is a finite number. If is an optimal solution of , then is an efficient solution of (we solve problem by the weighted-sum problem method (by choosing), see, Zeleny [48, 49]).

For , we put , and such that, for and

 for .

Theorem 3.6. The Convex hull of is an -dimensional simplex and contains .

Proof. First we show that is a affinely independent. Since for and for ,, we put , therefore, (by the definition of , this is evident), Let then ; since , therefore, , and is a affinely independent.

To show that the convex hull contains , suppose . Since is a Linearly independent set, hence it is a basis for ; therefore, there is , such that . If , we have , but we have , which contradicts the previous paragraph. Hence, and , therefore, (S is the convex hull of . We showed that .

Theorem 3.7. may also be written as following.

=

 Proof. Suppose that , then

Therefore . On other hand, we have , therefore

Now suppose that Let , , , , then We have , but , therefore

By the definition of , , we have

== =, then , therefore .

Theorem 3.8. Let and suppose , does not belong to , and , where is the solution of problem (4) then .

	 (4)

Proof. Suppose does not belong to . Then we may choose a point such that . Since , then , on other hand, we have then .

Put , },

. Choose such that and . Let . Suppose then , . Since then and therefore , . Therefore . Similarly we show that , . We conclude that . Since , this contradicts the fact that belong to the boundary of (consider problem (4)) so the proof is complete.

From Rockafellar [40] and Yu [48] and the weighted-sum problem, is a face of if and only if is equal to the set of the optimal solution set of following problem

	 (5)

 for some .

The variable vector expresses the corresponding multiples of the output and input vector .

We know that is weak efficient unit if and only if the optimal value of the following problem is zero. (It is the clear). (6)

The dual of the linear program (6) is as follows:

 (7)

By the duality Theorem of linear programing, since the optimal value of (6) is zero, problem (7) also has an optimal value of zero, therefore

 and , , From Falk and Hoffman [23], we know that the optimal values of problem (5) correspond to weakly efficient faces of for

. Inequality , construct inequality cuts needed in the outer approximation algorithm for generating all efficient extreme points of .

[bookmark: GrindEQpgref4ae1cb3f3]4. Generating All Efficient Extreme Points of the production possibility set

We apply the outer approximation algorithm for generating all efficient extreme points of the outcome set of problem (2). In what follows, all efficient extreme points of the production possibility set of the DEA with VRS are essentially immediately available upon termination of the algorithm, by converting points in the outcome set of problem (2) to equivalent points in .

The Outer Approximation Algorithm applied as follows:

Initialization step. Compute a point . may be set equal to any strict convex combination of and , where is any optimal solution to the linear program (6) with and construct the -dimensional simplex containing described in Theorems (3.6) and (3.7). Set is a -dimensional simplex consisting of the vertices of , as described in Theorems (3.6).

Store both the vertex set given in Theorem (3.6) inequality representation of given in the Theorem (3.7). Set and go to iteration . Iteration , , See Steps through below.

Step 1). If, all vertexes of belong to , then stop . Otherwise, choose any vertex of such that, it does not belong to , for example and continue (To test a given is membership in , one may apply the phase-I procedure of the simplex method to problem (6) by putting .

Step 2). Compute description in the Theorem (3.8) by putting

.

Step 3). Set where

 is any dual optimal solution to the linear programing (6) with that have been calculated in the step (2).

Step 4). Using vertexes of and method that it supposed by Falk and Hoffman [23] and definition of given in Step (3), determine all vertexes of , set and go to iteration k.

By definition of in step (3) since don’t belong to and , we conclude that algorithm generates distinct polyhedral , so that

. This implies that the algorithm must be finite and it must terminate in some iteration . is a -dimensional simplex including the vertices of , formed in each stage .

Theorem 4.1. Let denote the iteration number in which and the outer approximation algorithm terminate. Let

 belong to vertexes set of and

then is identical to the set of all efficient extreme points of .
Proof. From before we have

. And, for , . is any dual optimal solution to the linear programing (6) with in step 3). Notice also that .

Suppose that , then are belong to vertex set of and

, therefore at last, of the inequalities below, must hold as equations at . , . That implies that . We show , by contradiction, suppose dose not belong to , therefore, there is such that , .

Let , , , .

For , let and for , let .

We choose such that , and define , for and , for and , for and , for . Then , for , , and , for , and , for .

Then , therefore . We have then is a strict convex combination of and , that is contradiction (because is belong to vertex set of). Therefore , from Theorem (3.5), we have . Since then is an efficient extreme point of .

Now suppose that is a efficient extreme point of and don’t belong to all efficient extreme points of , therefore, we choose and , so that . By solving problem (2) by weighted-sum problem method(see, Zeleny [49]), and from Theorem (3) in Benson [7], we conclude that is an efficient extreme point of the polyhedron .
We may select a point

, , such that is the unique optimal solution to the following problem

 (8)

From the definition of , this implies that is also the unique optimal solution to the problem (8). Since ,therefore

 and

.

Since these inequalities imply that

.

Since the left-hand-side of the previous inequality equals , yielding a contradiction. Therefore, belong to all efficient extreme points of must be true, so that the proof is complete.

[bookmark: GrindEQpgref4ae1cb3f4]5. Application and discussion

In this section, we illustrate the problem by two numerical example.

Example 1.
Consider the case where there are seven units with an input and an output whose details have been given in the following Table.

 Table 5.1 Input and output of the seven DMUs.
	
	

	

	

	

	

	

	

	Input
	 1
	 1
	 2
	 4
	 5
	 6
	 3

	Output
	 1
	 3
	 5
	 6
	 7
	 8
	 2

	

	 1
	 1
	 1
	 0.83
	 0.93
	 1
	 0.33

	Efficiency status
	 non-extreme
	 extreme
	 extreme
	 -
	 -
	 extreme
	 -

 The corresponding MOLP is

 (9)

 Where the efficiency frontier of production possibility set of above example is shown in Figure 5.1.

In the initialization step of the algorithm, we have , then =. We select By definition of , we have , for some belonging to the feasible region of problem (9)}.

 [image:]
Figure 5.1: The efficiency frontier of production possibility set.

 Put . If we solve problem (3), we would obtain .

Therefore , . As shown in Figure 5.2.

[image:]

Figure 5.2: The set in space.

The vertexes set of given in Theorem (3.6) are
which are computed as follows:

 . Therefore and .

In step (1) of the algorithm, since (-6.5,9.5) does not belong to , we put

. We go to step (2). If we solved problem (6) by == we would obtain . We put, then . Now, we solved problem (4), we put and , we would obtain and .

As shown in Figure 5.3. We solved problem (7) by , we would obtain , then the inequality cut is as follows.

.

We go to step (3) and we organize As shown in Figure 5.4.

The vertex set of given in the Theorem (3.6) are We put . Since (-6.5,8.35) does not belong to , we put .

[image:]

Figure 5.3: , , and in space.

[image:]

Figure 5.4: The and sets in space.

In the next step, we solved problem (4), we put and , we would obtain and . We solved problem (7) by , we would obtain , then the inequality cut is as follows.

.

We go to step (3) and we organize . As shown in Figure .5.4. The vertexes set of given in Theorem (3.6) are

. We put . Since (2.5,0.5) does not belong to , we put .

[image:]

Figure 5.5: The and set in space.

In the next step, we solved problem (4), we put and , we would obtain and . We solved problem (7) by , we would obtain , then the inequality cut is as follows.

.

We go to step (3) and we organize . As shown in Figure 5.5. The vertexes set of given in Theorem (3.6) are

. We put . Since (-1,4) does not belong to , we put .

In the next step, we solved problem (4), we put and , we would obtain and . We solved problem (7) by , we would obtain , then the inequality cut is as follows.

.

We go to step (3) and we organize . As shown in Figure 5.5. The vertexes set of given in Theorem (3.6) are

Since (-6.5,0.5), (-1,0.5) and (-6.5,8) have the same components to , then they do not belong to . Therefore, the vertexes set of are as follows.

.

We obtain the vertexes set of by converting to as follows:

.

Example 2.
Consider the case where there are five units with an input and two outputs whose details have been given in the following Table.

 Table 5.2. The input and outputs of the first DMUs.
	
	

	

	

	

	

	Inputs
	 1
	 1
	 1
	 1
	 1

	Output1
	 6
	 5
	 2
	 3
	 2

	Output2
	2
	3.5
	5
	3.5
	2

	

	 1
	 1
	 1
	 0.833
	 0.5

	Efficiency status
	extreme
	 extreme
	 extreme
	 -
	 -

 The corresponding MOLP is

 (10)

 In the initialization step of the algorithm, we have , , then =. We select By definition of , we have , for some belonging to the feasible region of problem (10)}.

 Put . If we solve problem (3), we would obtain .

Therefore , .

The vertexes set of given in Theorem (3.6) are
which are computed as follows:

 Therefore and .

In step (1) of the algorithm, since does not belong to , we put

. We go to step (2). If we solved problem (6) by ==, we would obtain . We put, then . Now, we solved problem (4), we put and , we would obtain and .

We solved problem (7) by , we would obtain , then the inequality cut is as follows.

.

We go to step (3) and we organize

The vertex set of given in the Theorem (3.6) are

We put . Since does not belong to , we put .

In the next step, we solved problem (4), we put and , we would obtain and . We solved problem (7) by , we would obtain , then the inequality cut is as follows.

.

We go to step (3) and we organize

The vertexes set of given in Theorem (3.6) are .

We put . Since does not belong to , we put .

In the next step, we solved problem (4), we put and, we would obtain and. We solved problem (7) by, we would obtain then the inequality cut is as follows.

.
We go to step (3) and we organize

The vertexes set of given in Theorem (3.6) are .

We put . Since does not belong to , we put .

In the next step, we solved problem (4), we put and, we would obtain and . We solved problem (7) by , we would obtain then the inequality cut is as follows.

.

The vertexes set of given in Theorem (3.6) are .

We put . Since does not belong to , we put .

In the next step, we solved problem (4), we put and, we would obtain and . We solved problem (7) by, we would obtain then the inequality cut is as follows.

.

The vertexes set of given in Theorem (3.6) are

[bookmark: _GoBack]Since has the same components to , then they do not belong to . Therefore, the vertexes set of are as follows.

.

We obtain the vertexes set of by converting to as follows:

.

6. Computational Experiment and statisical analysis
To conduct a preliminary computational experiment for our proposed approach, we can use the preliminary VS-Fortran code to execute the outer linear approximation algorithm, see Benson [8]. The Horst-Thoai–De Vries method [29] is used to execute the fourth step of the algorithm; the linear bisection method is used for our univariate search in the second step, and to solve the linear programming problem, we use the simplex algorithm; as implemented by the subroutines of IMSL. [51]. Benson [8] has provided the number of iterations and efficient extreme points and the CPU introduction times for thirty multiple objective linear programming problems with different dimensions. In the present research, we use the Gams software to solve our DEA models and the Lindo software is used for solving the linear programming problems. Note that in order to determine the efficient extreme points using traditional DEA models, we need to solve at least models, which is difficult to do; it would also be quite difficult to obtain information related to the efficient surfaces. However, in this article, we arrive at all the efficient extreme points by solving only one MOLP model, and the model is not dependent on the unit under evaluation. The m+s+n model is variable in the decision set and the number of m+s is variable in the outcome set. Now, the outcome set is smaller and we can convert the efficient extreme points in this set to efficient extreme points in the decision set through a simple calculation; thus, using the presented algorithm, we can determine the efficient extreme points of the production possibility set and its efficient surfaces by solving one model and a few iterations of the algorithm. In the numerical example provided, we use the model to evaluate seven decision-making units (DMUs) under VRS technology, each having one input and one output. In the one example, there are 9 variables in the decision set and 2 variables in the outcome set; we obtained all efficient extreme points after four iterations of the algorithm. In the third step of the algorithm, we solve a linear programming problem to find the optimal values of , and to form the cutting-plane equations, a linear programming problem is solved in each stage. As can be observed, this method involves fewer calculations for finding the extreme points compared to traditional DEA models, which require solving models for the same purpose. For the example 2, we have similar interparation. The statisical analysis of examples discriped in Table 6.1.

Table 6.1. The statisical analysis of examples.
	Example
	The number of
Inputs and outputs
	The number of
DMUs
	The number of variables in feasible region
	The number of efficient extreme points
in feasible region
	The number of efficient extreme points in outcome space
	The number of
algorithm iterations
	The number of
Solved LPs

	Example 1
	2
	7
	9
	84
	3
	4
	9

	Example 2
	3
	5
	8
	70
	3
	5
	12

The presented algorithm has many useful computational advantages to previous approaches for determining the efficient extreme points of the production possibility set:
1. Since the algorithm produces all efficient extreme points of the outcome set based on the decision set and the outcome set is smaller than the decision set, fewer calculations are needed for finding these points.
2. The proposed algorithm is precise and finite; thus, through solving one MOLP model and a number of iterations, we can arrive at all efficient extreme points and efficient surfaces.
3. This algorithm does not face the issues of previous algorithms in producing the efficient extreme points, such as infeasibility and degeneracy.
4. The presented approach makes a new connection between DEA and MOLP problems; in this regard, we can identify all efficient surfaces by solving one MOLP problem and multiple iterations of the algorithm.
5. The presented approach can be a new method for obtaining all efficient extreme points.

[bookmark: GrindEQpgref585a3d9e9]7. Conclusion

The purpose of this paper was to develop a new method for generating efficient extreme points
of the production possibility set with VRS. We proposed an MOLP problem whose feasible region same of is production possibility set. We applied the outer approximation algorithm for generating the efficient extreme points of MOLP problem. Since the average number of efficient extreme points in the outcome set is less than the average number of efficient extreme points in the decision set, the method proposed is pretty fit. We obtain the efficient frontier by solving an MOLP problem, the outer approximation algorithm can be implemented relatively easily by using search methods, linear programming techniques, and any one of several special methods from the global optimization literature for generating new vertexes set as linear inequality cuts are added to the containing polyhedral generated by the algorithm. This algorithm used few calculations to produce all the extreme points. The results of this paper can be used on various DEA-related application problems. The results proposed a way for extending the analysis of production efficiency to further path. In this method, we obtain the efficient frontier by solving an MOLP problem.
For future research, we suggest extending our presented approach to determine the units’ return to scale class; furthermore, we can solve the proposed MOLP problem using other methods for obtaining extreme points, such as vector maximization and make a comparison of results.

6. References
[1] R. Allen, A.D. Athanassopoulos, R.G. Dyson, E. Thanassoulis, Weights restrictions and value judgements in data envelopment analysis: evolution,
development and future directions, Ann. Oper. Res., 73 (1997), 13–34.

[2] R. Banker, H.Chang, W.W.Cooper, Equivalence and implementation of alternative methods for determining return to scale in data envelopment analysis, Eur. J. Oper. Res., 89 (1996), 473-481.

[3] R. Banker, A. Charnes, W.W. Cooper, Some models for estimating technical and scale inefficiencies in data envelopment analysis, Manage. Sci., 30(9) (1984), 1078-1092.

[4] H.P. Benson, A Geometrical Analysis of the Efficient Outcome Set in Multiple-Objective Convex Programs with Linear Criterion Functions, J. Global Optim., 6 (1995), 231-251.

[5] H.P. Benson, Vector Maximization with Two Objective Functions, J. Optim Theory. Appl., 28 (1979), 253–257.

[6] H.P. Benson, Generating the Efficient Outcome Set in Multiple Objective Linear Programs: The Bicriteria Case, Acta Math. Vietnam. 22 (1997), 29–51.

[7] H.P. Benson, Admissible Points of a Convex Polyhedron, J Optim Theory Appl., 38 (1982), 341-361.
[8] H.P Benson, An Outer Approximation Algorithm for Generating All Efficient Extreme Points in the Outcome Set of a Multiple Objective Linear Programming Problem, J. Global Optim.,13 (1998), 1-24.

[9] H.P. Benson, S. Erjiang, Continuous Optimization A weight set decomposition algorithm for finding all efficient extreme points in the outcome set of a multiple
objective linear program, Eur. J. Oper. Res., 139 (2002), 26–41.

[10] H.P. Benson, S. Sayin, Towards Finding Global Representations of the Efficient Set in Multiple Objective Mathematical Programming, NAV RES LOG., 44 (1997), 47-67.

[11] G.R. Bitran, Theory and Algorithms for Linear Multiple Objective Programs with Zero one Variables, Math. Program., 17 (1979), 362–390.

[12] A. Charnes, W.W. Cooper, E. Rhodes, Measuring the efficiency of decision making units, Eur. J. Oper. Res., 2(6) (1978), 429-444.

[13] J.L. Cohon, Multiobjective Programming and Planning, Academic Press, New York (1978).

[14] J.P. Dauer, Analysis of the Objective Space inMultiple Objective Linear Programming, J Math Anal Appl., 126 (1987), 579-593.

[15] J.P. Dauer, On Degeneracy and Collapsing in the Construction of the Set of Objective Values in a Multiple Objective Linear Program, ‎Ann. Oper. Res., 47 (1993), 279-292.

[16] J.P. Dauer, R.J. Gallagher, A Combined Constraint-Space, Objective-Space Approach for Determining High-Dimensional Maximal Efficient Faces of Multiple Objective Linear Programs, Eur. J. Oper. Res., 88 (1996), 368–381.

[17] J.P. Dauer, Y.H. Liu, Solving Multiple Objective Linear Programs in Objective Space, Eur. J. Oper. Res., 46(1990), 350-357.

[18] J.P. Dauer, O.A. Saleh, Constructing the Set of Efficient Objective Values in Multiple Objective Linear Programs, Eur. J. Oper. Res., 46 (1990), 358-357.

[19] K. DE WITTE, R. MARQUES, Influential observations in frontier models, a robust non-oriented approach to the water sector. ‎Ann. Oper. Res., 181 (2010), 377-392.

[20] J. Doyle, R. Green, Data envelopment analysis and multiple criteria decision making, Omega, 21 (6) (1993), 713–715.

[21] A. Ebrahimnejad , M. Tavana, An interactive MOLP method for identifying target units in output-oriented DEA models: The NATO enlargement problem, Measurement, 52 (2014), 124–134.

[22] G.W. Evans, An Overview of Techniques for Solving Multiobjective Mathematical Programs, Manage. Sci., 30 (1984), 1268–1282.

[23] J.E. Falk, K.L. Hoffman, A Successive Underestimating Method for Concave Minimization Problems, ‎Math. Oper. Res., 1(1976), 251-259.

[24] R.J. Gallagher, O.A. Saleh, A Representation of an Efficiency Equivalent Polyhedron for the Objective Set of a Multiple Objective Linear Program, Eur. J. Oper. Res., 80 (1995), 204–212.

[25] A. Goicoechea, D.R. Hansen, L. Duckstein, Multiobjective Decision Analysis with Engineering and Business Applications, John Wiley and Sons, New York (1982).

[26] B. Golany, An interactive MOLP procedure for the extension of DEA to effectiveness analysis, J. Oper. Res. Soc., 39 (8) (1988), 725–734.

[27] F. Hosseinzadeh Lotfi, G.R. Jahanshahloo, M.R. Mozaffari, J. Gerami, Finding DEA-efficient hyperplanes using MOLP efficient faces, J. Comput. Appl. Math., 235 (2011), 1227–1231.

[28] F. Hosseinzadeh Lotfi, G.R. Jahanshaloo, M. Soltanifar, A. Ebrahimnejad, S.M. Manosourzadeh, Relationship between MOLP and DEA based on output-orientated CCR dual model, Expert Syst. Appl., 37 (6) (2010), 4331–4336.

[29] F. Hosseinzadeh Lotfi, A. A. Noora, G. R. Jahanshahloo, J. Jablonsky, M. R. Mozaffari, J. Gerami, An MOLP based procedure for finding efficient units in DEA models, Cent Eur J Oper Res, 17 (2009), 1-11.

[30] R. Horst, N.V. Thoai, J. Devries, On Finding the New Vertices and Redundant Constraints in Cutting Plane Algorithms for Global Optimization, Oper. Res. Lett, 7 (1988), 85–90.

[31] H. Isermann, The Enumeration of the Set of All Efficient Solutions for a Linear Multiple Objective Program, Oper. Res. Q., 28 (1977), 711–725.

[32] G.R. Jahanshahloo, F. Hosseinzadeh Lotfi, H. Zhiani Rezai, F. Rezai Balf, Finding strong defining hyperplanes of Production Possibility Set, Eur. J. Oper. Res., 177 (2007), 42–54.

[33] G.R. Jahanshahloo, F. Hosseinzadeh Lotfi, M. Zohrehbandian, Finding the piecewise linear frontier production function in Data Envelopment Analysis,
Appl. Math. Comput., 163 (1) (2005), 483–488.

[34] R. Joro, P. Korhonen, J. Wallenius, Structural comparison of data envelopment analysis and multiple objective linear programming. Manage. Sci., 44 (7) (1998), 962–970.

[35] P. Korhonen, Searching the efficient frontier in Data Envelopment Analysis, IIASA, IR, (1997), p. 97–79.

[36] M.M. Kostreva, M.M. Wiecek, Time Dependency in Multiple Objective Dynamic Programming, J. Math. Anal. Appl., 173 (1993), 289–307.

[37] H.W. Kuhn, A.W. Tucker, Nonlinear Programming, in J. Neyman (ed.), Proceedings of the 2nd Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, California, (1950), pp. 481–492.

[38] D.T. Luc, Theory of Vector Optimization, Springer Verlag, Berlin/New York (1989).

[39] N. Malekmohammadi , F. Hosseinzadeh Lotfi, A. B. Jaafar, Target setting in data envelopment analysis using MOLP, Appl. Math. Model., 35 (2011), 328–338.

[40] R.T. Rockafellar, Convex Analysis,pinceton University Press, Princeton, New Jersey,49 (1970).

[41] Y. Sawaragi, H. Nakayama, T. Tanino, Theory of Multiobjective Optimization,
Academic Press, Orlando, Florida (1985).

[42] S. Sayin, An algorithm based on facial decomposition for finding the efficient set in multiple objective linear programming, Oper. Res. Lett, 19 (1996), 87–94.

[43] R.E. Steuer, Multiple Criteria Optimization: Theory, Computation, and Application, John Wiley and Sons, New York (1986).

[44] R.E. Steuer, ADBASE Multiple Objective Linear Programming Package, University of Georgia, Athens, Georgia, 1989.

[45] B. Villarreal, M.H. Karwan, Multicriteria Integer Programming: A (Hybrid) Dynamic Programming Recursive Approach, Math. Program, 21(1981), 204–223.

[46] B.Y.H. Wong, M. Luque, J.B. Yang, Using interactive multiobjective
methods to solve DEA problems with value judgements, Comput. Oper. Res., 36 (2009), 623–636.

[47] J. B. Yang, B.Y.H. Wong, Xu Dong-Ling, T.J. Stewart, Integrating DEA-oriented performance assessment and target setting using interactive MOLP methods, Eur. J. Oper. Res., 195 (2009), 205–222.

[48] P.L. Yu, Multiple Criteria Decision Making, Plenum, New York (1985).

[49] P.L Yu, M. Zeleny, The set of all nondominated solutions in linear cases and multicriteria simplex method, J. Math. Anal. Appl., 49 (1975), 430–468.

[50] M. Zeleny, Linear Multiobjective Programming, Springer Verlag, Berlin New York (1974).

[51] M. Zeleny, Multiple Criteria Decision Making, McGraw-Hill, New York (1982).

[52] International Mathematical and Statistical Libraries, Inc., The IMSL Library Reference Manual, IMSL, Houston, Texas (1991).
22

image2.wmf
(1)

oleObject49.bin

oleObject500.bin

image494.wmf
AL

v

oleObject501.bin

image495.wmf
)

,

(

1

1

y

x

oleObject502.bin

image496.png
(58

[T N

251

(6505}

(2505)

(550

K 5

image497.wmf
1

S

oleObject503.bin

image498.wmf
2

S

oleObject504.bin

image45.wmf
)

,

(

)

,

(

*

*

Y

X

Y

X

-

¹

-

image499.wmf
)

,

(

1

1

y

x

oleObject505.bin

image500.wmf
6.5,8.375)

(

=

)

,

(

=

)

,

(

2

2

-

-

-

Y

X

Y

X

oleObject506.bin

image501.wmf
4,3)

(

=

)

,

(

-

-

p

p

Y

X

oleObject507.bin

image502.wmf
0.924

=

*

l

oleObject508.bin

image503.wmf
6.326,8)

(

=

)

,

(

-

-

w

w

Y

X

oleObject509.bin

oleObject50.bin

image504.wmf
6.326,8)

(

=

)

,

(

-

-

w

w

Y

X

oleObject510.bin

image505.wmf
8

=

0,

=

1,

=

3

2

1

*

*

*

v

u

u

oleObject511.bin

image506.wmf
8

1

£

y

oleObject512.bin

image507.wmf
8}

2,

0.43

3,0.57

,

6.5

,

0.5

|

)

,

{(

=

1

1

1

1

1

1

1

1

1

2

£

£

-

£

-

-

£

-

£

-

y

x

y

x

y

x

y

y

x

S

oleObject513.bin

image508.wmf
2

S

oleObject514.bin

image46.wmf
v

T

Y

X

Î

)

,

(

image509.wmf
6,8)}

(

6.5,8),

(

(2.5,0.5),

2,5),

(

6.5,0.5),

{(

-

-

-

-

oleObject515.bin

image510.wmf
3

=

k

oleObject516.bin

image511.wmf
V

oleObject517.bin

image512.wmf
(2.5,0.5)

=

)

,

(

3

3

Y

X

-

oleObject518.bin

image513.png
_— 5
(58]

Gosal

: 25

14

(-1.05)

(65,05 et

5,5

2.5

image514.wmf
3

S

oleObject51.bin

oleObject519.bin

image515.wmf
4

S

oleObject520.bin

image516.wmf
)

,

(

1

1

y

x

oleObject521.bin

image517.wmf
(2.5,0.5)

=

)

,

(

=

)

,

(

3

3

Y

X

Y

X

-

-

oleObject522.bin

image518.wmf
4,3)

(

=

)

,

(

-

-

p

p

Y

X

oleObject523.bin

image519.wmf
0.462

=

*

l

image47.wmf
n

R

Î

l

oleObject524.bin

image520.wmf
1,1.8462)

(

=

)

,

(

-

-

w

w

Y

X

oleObject525.bin

image521.wmf
1,1.8462)

(

=

)

,

(

-

-

w

w

Y

X

oleObject526.bin

image522.wmf
1

=

1,

=

0,

=

3

2

1

-

*

*

*

v

u

u

oleObject527.bin

image523.wmf
1

1

-

£

x

oleObject528.bin

image524.wmf
1}

8,

2,

0.43

3,0.57

,

6.5

,

0.5

|

)

,

{(

=

1

1

1

1

1

1

1

1

1

1

3

-

£

£

£

-

£

-

-

£

-

£

-

x

y

x

y

x

y

x

y

y

x

S

oleObject52.bin

oleObject529.bin

image525.wmf
3

S

oleObject530.bin

image526.wmf
6.5,8)}

(

6,8),

(

2,5),

(

1,0.5),

(

1,4),

(

6.5,0.5),

{(

-

-

-

-

-

-

oleObject531.bin

image527.wmf
4

=

k

oleObject532.bin

image528.wmf
V

oleObject533.bin

image529.wmf
1,4)

(

=

)

,

(

4

4

-

-

Y

X

image48.wmf
)

,

,

(

l

Y

X

oleObject534.bin

image530.wmf
1,4)

(

=

)

,

(

4

4

-

-

Y

X

oleObject535.bin

image531.wmf
4,3)

(

=

)

,

(

-

-

p

p

Y

X

oleObject536.bin

image532.wmf
0.8572

=

*

l

oleObject537.bin

image533.wmf
7)

1.429,3.85

(

=

)

,

(

-

-

w

w

Y

X

oleObject538.bin

image534.wmf
7)

1.429,3.85

(

=

)

,

(

-

-

w

w

Y

X

oleObject53.bin

oleObject539.bin

image535.wmf
0.3333

=

0.6666,

=

0.3333,

=

3

2

1

*

*

*

v

u

u

oleObject540.bin

image536.wmf
1

2

1

1

£

-

x

y

oleObject541.bin

image537.wmf
1}

2

1,

8,

2,

0.43

3,0.57

,

6.5

,

0.5

|

)

,

{(

=

1

1

1

1

1

1

1

1

1

1

1

1

4

£

-

-

£

£

£

-

£

-

-

£

-

£

-

x

y

x

y

x

y

x

y

x

y

y

x

S

oleObject542.bin

image538.wmf
4

S

oleObject543.bin

image539.wmf
6.5,8)}

(

6,8),

(

2,5),

(

1,0.5),

(

1,3),

(

6.5,0.5),

{(

-

-

-

-

-

-

image49.wmf
(2)

oleObject544.bin

image540.wmf
6.5,0.5)

(

=

)

ˆ

,

ˆ

(

=

ˆ

-

-

Y

X

V

oleObject545.bin

image541.wmf
=

V

oleObject546.bin

image542.wmf
=

E

V

oleObject547.bin

image543.wmf
6,8)}

(

2,5),

(

1,3),

{(

-

-

-

oleObject548.bin

image544.wmf
v

T

oleObject2.bin

oleObject54.bin

oleObject549.bin

image545.wmf
)

,

(

1

1

y

x

-

oleObject550.bin

image546.wmf
)

,

(

1

1

y

x

oleObject551.bin

image547.wmf
(6,8)

(2,5),

(1,3),

oleObject552.bin

oleObject553.bin

oleObject554.bin

oleObject555.bin

image50.wmf
)

,

(

)

,

(

*

*

Y

X

Y

X

-

³

-

oleObject556.bin

oleObject557.bin

oleObject558.bin

image548.wmf
0.

,

0

0,

0

0,

0,

0,

0,

1

=

0

2

5

.

3

5

5

.

3

2

0

2

3

2

5

6

0

.

)

,

,

(

max

2

1

1

5

4

3

2

1

5

4

3

2

1

2

5

4

3

2

1

1

5

4

3

2

1

1

5

4

3

2

1

2

1

1

³

³

³

³

³

³

³

³

+

+

+

+

³

-

+

+

+

+

³

-

+

+

+

+

£

-

+

+

+

+

-

y

y

x

y

y

x

t

s

y

y

x

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

oleObject559.bin

image549.wmf
1

=

,5}

1,

=

|

{

max

=

1

1

-

-

K

j

x

v

j

AL

oleObject560.bin

image550.wmf
2

=

,5}

1,

=

|

{

min

=

1

2

K

j

y

v

j

AL

oleObject561.bin

image551.wmf
2

=

,5}

1,

=

|

{

min

=

2

3

K

j

y

v

j

AL

oleObject55.bin

oleObject562.bin

oleObject563.bin

image552.wmf
2)

,

1,2

(

=

)

,

,

(

3

2

1

-

v

v

v

oleObject564.bin

image553.wmf
5).

.

1

,

1.5

1.5,

(

=

)

ˆ

,

ˆ

(

-

-

Y

X

oleObject565.bin

oleObject566.bin

image554.wmf
2

3

1

2

1

1

3

2

1

1.5

,

1.5

,

1.5

|

)

,

,

{(

=

y

v

y

v

x

v

v

v

v

V

£

£

£

£

-

£

£

-

oleObject567.bin

image555.wmf
)

,

,

(

2

1

1

y

y

x

image51.wmf
)

,

(

)

,

(

*

*

Y

X

Y

X

-

¹

-

oleObject568.bin

oleObject569.bin

image556.wmf
5

.

7

=

b

oleObject570.bin

image557.wmf
1

2

1

2

1

1

0

1.5

,

,1.5

1.5

|

)

,

,

{(

=

x

y

y

y

y

x

S

-

£

-

£

£

-

oleObject571.bin

image558.wmf
5}

.

7

1

2

1

£

-

+

x

y

y

oleObject572.bin

oleObject573.bin

image559.wmf
}

7.5)

,

1.5,1.5

(

1.5),

,

1.5,7.5

(

1.5),

,

1.5

4.5,

(

1.5),

,

1.5,1.5

{(

-

-

-

-

oleObject56.bin

oleObject574.bin

image560.wmf
.

7.5

=

(1.5)

1.5

5

.

7

=

,

1.5

=

,

1.5

=

,

1.5

=

7.5,

=

(1.5)

1.5

5

.

7

=

,

1.5

=

,

1.5

=

1.5,

=

,

4.5

=

5

.

1

1.5

5

.

7

=

1.5),

,

1.5,1.5

(

=

3

3

3

2

3

1

2

3

2

2

2

1

1

3

1

2

1

1

0

-

+

-

-

+

-

-

-

-

q

q

q

q

q

q

q

q

q

q

oleObject575.bin

image561.wmf
1.5),

,

4.5,1.5

(

=

1

-

q

oleObject576.bin

image562.wmf
1.5)

,

1.5,7.5

(

=

2

-

q

oleObject577.bin

image563.wmf
7.5)

,

1.5,1.5

(

=

3

-

q

oleObject578.bin

image564.wmf
1.5)

,

1.5,7.5

(

-

oleObject57.bin

oleObject579.bin

oleObject580.bin

image565.wmf
1.5)

,

1.5,7.5

(

=

)

,

(

1

1

-

-

Y

X

oleObject581.bin

oleObject582.bin

oleObject583.bin

image566.wmf
2)

,

1,2

(

=

)

,

,

(

3

2

1

-

v

v

v

oleObject584.bin

image567.wmf
6,2,0)

,

1

(

=

)

,

,

(

-

*

*

*

t

y

x

oleObject585.bin

image52.wmf
v

T

image568.wmf
2)

,

1,2

(

0.5

2)

,

1,6

(

0.5

=

)

,

,

0.5(

)

,

0.5(

=

)

,

(

3

2

1

-

+

-

+

-

-

*

*

AL

AL

AL

p

p

v

v

v

y

x

Y

X

oleObject586.bin

image569.wmf
2)

,

1,4

(

=

)

,

(

-

-

p

p

Y

X

oleObject587.bin

image570.wmf
5)

.

1

,

7.5

1.5,

(

=

)

,

(

=

)

,

(

1

1

-

-

-

Y

X

Y

X

oleObject588.bin

image571.wmf
2)

,

1,4

(

=

)

,

(

-

-

p

p

Y

X

oleObject589.bin

image572.wmf
0.571

=

*

l

oleObject590.bin

oleObject58.bin

image573.wmf
715)

.

1

,

6

286,

.

1

(

=

)

,

(

-

-

w

w

Y

X

oleObject591.bin

image574.wmf
715)

.

1

,

6

286,

.

1

(

=

)

,

(

-

-

w

w

Y

X

oleObject592.bin

image575.wmf
0,

=

,

1

=

2

1

*

*

u

u

oleObject593.bin

image576.wmf
6

=

0,

=

4

3

*

*

v

u

oleObject594.bin

image577.wmf
6

1

£

y

oleObject595.bin

oleObject59.bin

image578.wmf
6}.

5,

.

7

,

1.5

,

1.5

,

1.5

|

)

,

,

{(

=

1

1

2

1

1

2

1

2

1

1

1

£

£

-

+

-

£

-

£

£

-

y

x

y

y

x

y

y

y

y

x

S

oleObject596.bin

oleObject597.bin

image579.wmf
}

7.5)

,

1.5,1.5

(

1.5),

,

6

(0,

1.5),

,

1.5,1.5

{(

-

-

oleObject598.bin

oleObject599.bin

image580.wmf
7.5)

,

1.5,1.5

(

-

oleObject600.bin

oleObject601.bin

image581.wmf
7.5)

,

1.5,1.5

(

=

)

,

(

2

2

-

-

Y

X

image53.wmf
v

T

oleObject602.bin

image582.wmf
7.5)

,

1.5,1.5

(

=

)

,

(

=

)

,

(

2

2

-

-

-

Y

X

Y

X

oleObject603.bin

oleObject604.bin

image583.wmf
0.471

=

*

l

oleObject605.bin

image584.wmf
591)

.

4

,

823

.

2

236,

.

1

(

=

)

,

(

-

-

w

w

Y

X

oleObject606.bin

image585.wmf
591)

.

4

,

823

.

2

236,

.

1

(

=

)

,

(

-

-

w

w

Y

X

oleObject607.bin

image3.wmf
R

Z

Î

oleObject60.bin

image586.wmf
,

3

2

=

,

3

1

=

2

1

*

*

u

u

oleObject608.bin

image587.wmf
4

=

0,

=

4

3

*

*

v

u

oleObject609.bin

image588.wmf
12

2

2

1

£

+

y

y

oleObject610.bin

image589.wmf
12}.

2

,

6

5,

.

7

,

1.5

,

1.5

,

1.5

|

)

,

,

{(

=

2

1

1

1

2

1

1

2

1

2

1

1

2

£

+

£

£

-

+

-

£

-

£

£

-

y

y

y

x

y

y

x

y

y

y

y

x

S

oleObject611.bin

oleObject612.bin

image590.wmf
}

4.5)

,

(0,3.5

5.25),

,

5

.

1

(0,

3),

,

1.5,6

(

1.5),

,

1.5,1.5

{(

-

-

image54.wmf
v

T

Y

X

Î

)

,

(

*

*

oleObject613.bin

oleObject614.bin

image591.wmf
3)

,

1.5,6

(

-

oleObject615.bin

oleObject616.bin

image592.wmf
3)

,

1.5,6

(

=

)

,

(

3

3

-

-

Y

X

oleObject617.bin

image593.wmf
3)

,

1.5,6

(

=

)

,

(

=

)

,

(

3

3

-

-

-

Y

X

Y

X

oleObject618.bin

image594.wmf
2)

,

1,4

(

=

)

,

(

-

-

p

p

Y

X

oleObject61.bin

oleObject619.bin

image595.wmf
0.75

=

*

l

oleObject620.bin

image596.wmf
75)

.

2

,

5

.

5

375,

.

1

(

=

)

,

(

-

-

w

w

Y

X

oleObject621.bin

oleObject622.bin

image597.wmf
4,

.

0

=

,

6

.

0

=

2

1

*

*

u

u

oleObject623.bin

image598.wmf
,

4

.

4

=

0,

=

4

3

*

*

v

u

oleObject624.bin

image55.wmf
n

R

Î

*

l

image599.wmf
4

.

4

4

.

0

6

.

0

2

1

£

+

y

y

oleObject625.bin

image600.wmf
}.

4

.

4

4

.

0

6

.

0

,

12

2

,

6

5,

.

7

,

1.5

,

1.5

,

1.5

|

)

,

,

{(

=

2

1

2

1

1

1

2

1

1

2

1

2

1

1

3

£

+

£

+

£

£

-

+

-

£

-

£

£

-

y

y

y

y

y

x

y

y

x

y

y

y

y

x

S

oleObject626.bin

image601.wmf
3

S

oleObject627.bin

image602.wmf
}

1.5)

,

5

.

1

1.5,

(

,

4.5)

,

3

(0,

5.25),

,

5

.

1

(0,

2),

,

6

0.5,

(

3.5),

,

5

1,

{(

-

-

-

oleObject628.bin

oleObject629.bin

image603.wmf
5.25)

,

5

.

1

(0,

oleObject62.bin

oleObject630.bin

oleObject631.bin

image604.wmf
5.25)

,

5

.

1

(0,

=

)

,

(

4

4

Y

X

-

oleObject632.bin

image605.wmf
5.25)

,

5

.

1

(0,

=

)

,

(

4

4

Y

X

-

oleObject633.bin

image606.wmf
2)

,

1,4

(

=

)

,

(

-

-

p

p

Y

X

oleObject634.bin

image607.wmf
0

=

*

l

oleObject635.bin

image56.wmf
)

,

,

(

*

*

*

l

Y

X

image608.wmf
2)

,

4

,

1

(

=

)

,

(

-

-

w

w

Y

X

oleObject636.bin

image609.wmf
2)

,

1,4

(

=

)

,

(

-

-

w

w

Y

X

oleObject637.bin

image610.wmf
0,

=

,

0

=

2

1

*

*

u

u

oleObject638.bin

image611.wmf
,

1

=

1,

=

4

3

-

*

*

v

u

oleObject639.bin

image612.wmf
1

1

-

£

-

x

oleObject640.bin

oleObject63.bin

image613.wmf
}.

1

,

4

.

4

4

.

0

6

.

0

,

12

2

,

6

5,

.

7

,

1.5

,

1.5

,

1.5

|

)

,

,

{(

=

1

2

1

2

1

1

1

2

1

1

2

1

2

1

1

4

-

£

-

£

+

£

+

£

£

-

+

-

£

-

£

£

-

x

y

y

y

y

y

x

y

y

x

y

y

y

y

x

S

oleObject641.bin

image614.wmf
4

S

oleObject642.bin

image615.wmf
}

1.5)

,

5

.

1

1.5,

(

5.25),

,

5

.

1

1,

(

2),

,

6

1,

(

3.5),

,

5

1,

{(

-

-

-

-

oleObject643.bin

image616.wmf
5

=

k

oleObject644.bin

image617.wmf
5.25)

,

5

.

1

1,

(

-

oleObject645.bin

image57.wmf
(2)

oleObject646.bin

image618.wmf
5.25)

,

5

.

1

1,

(

=

)

,

(

5

5

-

-

Y

X

oleObject647.bin

image619.wmf
5.25)

,

5

.

1

1,

(

=

)

,

(

5

5

-

-

Y

X

oleObject648.bin

oleObject649.bin

image620.wmf
923

.

0

=

*

l

oleObject650.bin

image621.wmf
5)

,

693

.

1,1

(

=

)

,

(

-

-

w

w

Y

X

oleObject651.bin

oleObject64.bin

image622.wmf
5)

,

693

.

1,1

(

=

)

,

(

-

-

w

w

Y

X

oleObject652.bin

image623.wmf
1,

=

,

0

=

2

1

*

*

u

u

oleObject653.bin

image624.wmf
,

2

=

0,

=

4

3

*

*

v

u

oleObject654.bin

image625.wmf
2

2

£

y

oleObject655.bin

image626.wmf
}.

2

,

1

,

4

.

4

4

.

0

6

.

0

,

12

2

,

6

5,

.

7

,

1.5

,

1.5

,

1.5

|

)

,

,

{(

=

2

1

2

1

2

1

1

1

2

1

1

2

1

2

1

1

5

£

-

£

-

£

+

£

+

£

£

-

+

-

£

-

£

£

-

y

x

y

y

y

y

y

x

y

y

x

y

y

y

y

x

S

oleObject656.bin

image58.wmf
)

,

(

*

*

Y

X

image627.wmf
5

S

oleObject657.bin

image628.wmf
}

1.5)

,

5

.

1

1.5,

(

5),

,

2

1,

(

2),

,

6

1,

(

3.5),

,

5

1,

{(

-

-

-

-

oleObject658.bin

image629.wmf
1.5)

,

5

.

1

1.5,

(

-

oleObject659.bin

image630.wmf
)

1.5

,

5

.

1

1.5,

(

=

)

ˆ

,

ˆ

(

=

ˆ

-

-

Y

X

V

oleObject660.bin

oleObject661.bin

oleObject662.bin

oleObject3.bin

oleObject65.bin

image631.wmf
}

5)

,

2

1,

(

2),

,

6

1,

(

3.5),

,

5

1,

{(

-

-

-

oleObject663.bin

oleObject664.bin

image632.wmf
)

,

,

(

2

1

1

y

y

x

-

oleObject665.bin

image633.wmf
)

,

,

(

2

1

1

y

y

x

oleObject666.bin

image634.wmf
}

5)

,

2

(1,

2),

,

6

(1,

3.5),

,

5

{(1,

oleObject667.bin

image59.wmf
v

T

oleObject66.bin

image60.wmf
v

T

Y

X

Î

)

,

(

oleObject67.bin

image61.wmf
)

,

(

)

,

(

*

*

Y

X

Y

X

-

³

-

oleObject68.bin

image62.wmf
)

,

(

)

,

(

*

*

Y

X

Y

X

-

¹

-

oleObject69.bin

image63.wmf
l

image4.wmf
Z

C

Z

C

T

T

³

oleObject70.bin

image64.wmf
v

T

Y

X

Î

)

,

(

oleObject71.bin

image65.wmf
)

,

,

(

l

Y

X

oleObject72.bin

image66.wmf
(2)

oleObject73.bin

image67.wmf
)

,

,

(

l

Y

X

oleObject74.bin

image68.wmf
(2)

oleObject4.bin

oleObject75.bin

image69.wmf
)

,

(

)

,

(

*

*

Y

X

Y

X

-

³

-

oleObject76.bin

image70.wmf
)

,

(

)

,

(

*

*

Y

X

Y

X

-

¹

-

oleObject77.bin

oleObject78.bin

image71.wmf
(2)

oleObject79.bin

image72.wmf
}

)

,

,

,

,

,

(

|

)

,

,

,

,

,

,

{(

=

1

1

1

1

=

v

s

m

s

m

T

y

y

x

x

y

y

x

x

V

Î

-

-

K

K

K

K

oleObject80.bin

image5.wmf
Z

C

Z

C

T

T

¹

image73.wmf
=

(

V

oleObject81.bin

image74.wmf
.

=

)

=

s

m

V

+

oleObject82.bin

image75.wmf
)

,

,

,

(

=

2

1

T

s

m

T

T

C

C

C

C

+

K

oleObject83.bin

image76.wmf
T

j

T

j

e

C

-

=

oleObject84.bin

image77.wmf
s

j

,

1,

=

K

oleObject85.bin

oleObject5.bin

image78.wmf
T

j

T

j

e

C

=

oleObject86.bin

image79.wmf
.

,

1,

=

s

m

m

j

+

+

K

oleObject87.bin

image80.wmf
s

m

e

e

e

e

m

s

m

m

+

-

-

+

+

=

}

,

,

,

,

,

{

1

1

K

K

oleObject88.bin

image81.wmf
Æ

¹

v

T

oleObject89.bin

image82.wmf
s

m

V

+

=

)

(

=

oleObject90.bin

image6.wmf
R

Z

Î

image83.wmf
r

j

r

j

n

j

y

y

³

å

l

1

=

oleObject91.bin

image84.wmf
s

r

,

1,

=

K

oleObject92.bin

image85.wmf
1

=

1

=

j

n

j

l

å

oleObject93.bin

image86.wmf
0

³

j

l

oleObject94.bin

image87.wmf
n

j

,

1,

=

K

oleObject95.bin

oleObject6.bin

image88.wmf
s

r

y

r

,

1,

=

,

K

oleObject96.bin

image89.wmf
i

j

i

j

n

j

x

x

-

³

-

å

l

1

=

oleObject97.bin

image90.wmf
m

i

,

1,

=

K

oleObject98.bin

image91.wmf
1

=

1

=

j

n

j

l

å

oleObject99.bin

image92.wmf
0

³

j

l

oleObject100.bin

image7.wmf
(1)

image93.wmf
n

j

,

1,

=

K

oleObject101.bin

image94.wmf
(

)

m

i

x

i

,

1,

=

,

K

-

oleObject102.bin

image95.wmf
(2)

oleObject103.bin

image96.wmf
m

i

,

1,

=

K

oleObject104.bin

image97.wmf
s

r

,

1,

=

K

oleObject105.bin

oleObject7.bin

image98.wmf
}

,

1,

=

,

)

,

,

,

,

,

(

|

{

max

=

1

1

n

j

T

y

y

x

x

x

v

v

j

s

m

j

i

AL

i

K

K

K

Î

-

oleObject106.bin

image99.wmf
}

,

1,

=

,

)

,

,

,

,

,

(

|

{

min

=

1

1

n

j

T

y

y

x

x

y

v

v

j

s

m

j

r

AL

m

r

K

K

K

Î

+

oleObject107.bin

image100.wmf
s

m

AL

m

s

AL

m

AL

m

AL

AL

AL

R

v

v

v

v

v

v

+

+

+

Î

)

,

,

,

,

,

,

(

=

1

2

1

K

K

oleObject108.bin

image101.wmf
(2)

oleObject109.bin

image102.wmf
s

m

R

v

+

Î

ˆ

oleObject110.bin

image8.wmf
R

Z

Î

image103.wmf
AL

v

v

<

ˆ

oleObject111.bin

image104.wmf
V

oleObject112.bin

image105.wmf
)

,

,

,

,

,

(

ˆ

|

)

,

,

,

,

,

,

(

=

{

=

1

1

1

2

1

s

m

m

s

m

m

y

y

x

x

v

v

v

v

v

v

v

v

V

K

K

K

K

-

-

£

£

+

+

oleObject113.bin

image106.wmf
}

)

,

,

,

,

,

(

1

1

v

s

m

T

y

y

x

x

Î

K

K

oleObject114.bin

image107.wmf
V

oleObject115.bin

oleObject8.bin

image108.wmf
s

m

R

+

oleObject116.bin

image109.wmf
s

m

+

oleObject117.bin

image110.wmf
v

AL

T

Y

X

Y

X

v

v

Î

-

)

,

(

),

,

(

<

<

ˆ

oleObject118.bin

image111.wmf
Æ

¹

v

T

oleObject119.bin

image112.wmf
V

oleObject120.bin

image9.wmf
Z

C

Z

C

T

T

>

image113.wmf
V

oleObject121.bin

image114.wmf
s

m

R

+

oleObject122.bin

image115.wmf
)

(

=

2

=

1

V

V

V

V

+

Ç

oleObject123.bin

image116.wmf
}

ˆ

|

{

=

1

v

v

R

v

V

s

m

³

Î

+

oleObject124.bin

image117.wmf
0}

|

{

=

2

£

Î

+

Z

R

Z

V

s

m

oleObject125.bin

oleObject9.bin

image118.wmf
1

V

oleObject126.bin

image119.wmf
2

V

oleObject127.bin

image120.wmf
=

V

oleObject128.bin

image121.wmf
V

oleObject129.bin

image122.wmf
,

)

,

(

),

,

(

<

ˆ

v

T

Y

X

Y

X

v

Î

-

oleObject130.bin

image10.wmf
)

,

,

,

,

,

,

,

,

(

=

)

,

,

(

=

1

1

1

n

s

m

y

y

x

x

Y

X

Z

l

l

l

K

K

K

image123.wmf
IntV

IntV

(

Æ

¹

oleObject131.bin

image124.wmf
V

oleObject132.bin

image125.wmf
s

m

+

oleObject133.bin

image126.wmf
V

v

o

Î

oleObject134.bin

image127.wmf
V

oleObject135.bin

oleObject10.bin

image128.wmf
V

v

Î

oleObject136.bin

image129.wmf
o

v

v

³

oleObject137.bin

image130.wmf
o

v

v

¹

oleObject138.bin

image131.wmf
V

v

Î

oleObject139.bin

image132.wmf
o

v

v

>

oleObject140.bin

image11.wmf
m

E

X

Î

image133.wmf
o

v

oleObject141.bin

image134.wmf
V

oleObject142.bin

image135.wmf
E

V

oleObject143.bin

image136.wmf
WE

V

oleObject144.bin

image137.wmf
V

oleObject145.bin

oleObject11.bin

image138.wmf
=

E

V

oleObject146.bin

image139.wmf
=

V

oleObject147.bin

image140.wmf
E

E

V

V

=

=

oleObject148.bin

image141.wmf
=

)

,

(

E

V

Y

X

Î

-

oleObject149.bin

image142.wmf
)

,

(

Y

X

-

oleObject150.bin

image12.wmf
s

E

Y

Î

image143.wmf
E

V

oleObject151.bin

image144.wmf
E

V

oleObject152.bin

image145.wmf
V

v

Î

¢

oleObject153.bin

image146.wmf
)

,

(

>

Y

X

v

-

¢

oleObject154.bin

image147.wmf
V

v

Î

¢

oleObject155.bin

oleObject12.bin

image148.wmf
v

T

Y

X

Î

¢

¢

)

,

(

oleObject156.bin

image149.wmf
)

,

(

Y

X

v

¢

¢

-

£

¢

oleObject157.bin

image150.wmf
)

,

(

<

)

,

(

Y

X

Y

X

¢

¢

-

-

oleObject158.bin

image151.wmf
=

)

,

(

E

V

Y

X

Î

-

oleObject159.bin

image152.wmf
E

V

Y

X

v

Î

-

)

,

(

=

oleObject160.bin

image13.wmf
,

n

E

Î

l

image153.wmf
E

V

v

Î

oleObject161.bin

image154.wmf
=

E

V

v

Î

oleObject162.bin

image155.wmf
)

,

(

=

Y

X

v

-

oleObject163.bin

image156.wmf
v

T

Y

X

Î

)

,

(

oleObject164.bin

image157.wmf
EF

Y

X

Î

-

)

,

(

oleObject165.bin

oleObject13.bin

image158.wmf
V

v

Î

oleObject166.bin

image159.wmf
)

,

(

Y

X

v

-

£

oleObject167.bin

image160.wmf
v

T

Y

X

Î

)

,

(

oleObject168.bin

image161.wmf
E

V

v

Î

oleObject169.bin

image162.wmf
V

Y

X

Î

-

)

,

(

oleObject170.bin

image14.wmf
m

j

e

C

T

j

T

j

,

1,

=

,

=

K

-

image163.wmf
)

,

(

=

Y

X

v

-

oleObject171.bin

image164.wmf
v

T

Y

X

Î

¢

¢

)

,

(

oleObject172.bin

image165.wmf
)

,

(

)

,

(

Y

X

Y

X

¢

¢

-

£

-

oleObject173.bin

image166.wmf
)

,

(

)

,

(

Y

X

Y

X

¢

¢

-

¹

-

oleObject174.bin

image167.wmf
V

oleObject175.bin

oleObject14.bin

image168.wmf
)

,

(

<

Y

X

v

AL

¢

¢

-

oleObject176.bin

image169.wmf
V

Y

X

Î

¢

¢

-

)

,

(

oleObject177.bin

image170.wmf
)

,

(

=

Y

X

v

-

oleObject178.bin

image171.wmf
E

V

oleObject179.bin

image172.wmf
=

E

V

v

Î

oleObject180.bin

image15.wmf
,

=

T

j

T

j

e

C

image173.wmf
.

)

,

,

,

,

,

(

.

.

max

=

1

1

1

=

1

=

v

s

m

i

m

i

r

s

r

T

y

y

x

x

t

s

x

y

Î

-

å

å

K

K

b

oleObject181.bin

image174.wmf
b

oleObject182.bin

image175.wmf
)

,

(

Y

X

-

oleObject183.bin

image176.wmf
(3)

oleObject184.bin

image177.wmf
)

,

(

Y

X

-

oleObject185.bin

oleObject15.bin

image178.wmf
(2)

oleObject186.bin

image179.wmf
(2)

oleObject187.bin

image180.wmf
s

m

j

w

j

+

,

1,

=

1,

=

K

oleObject188.bin

image181.wmf
s

m

j

s

m

i

+

+

,

1,

=

,

,

1,

=

K

K

oleObject189.bin

image182.wmf
AL

s

m

v

v

Y

X

v

v

v

q

<

ˆ

),

ˆ

,

ˆ

(

=

)

ˆ

,

,

ˆ

(

=

ˆ

=

1

0

-

+

K

oleObject190.bin

image16.wmf
s

m

m

j

+

+

,

1,

=

K

image183.wmf
)

,

,

,

,

,

(

=

2

1

j

s

m

j

i

j

j

j

q

q

q

q

q

+

K

K

oleObject191.bin

image184.wmf
i

j

i

v

q

ˆ

=

oleObject192.bin

image185.wmf
j

i

¹

oleObject193.bin

image186.wmf
)

ˆ

ˆ

(

ˆ

=

ˆ

ˆ

=

1

=

1

=

1

=

i

m

i

r

s

r

j

j

s

m

j

j

j

i

x

y

v

v

v

q

å

å

å

-

-

+

-

+

+

b

b

oleObject194.bin

image187.wmf
j

i

=

oleObject195.bin

oleObject16.bin

image188.wmf
}

,

1,

,

{

0

s

m

q

q

q

+

K

oleObject196.bin

image189.wmf
s

m

+

oleObject197.bin

image190.wmf
V

oleObject198.bin

image191.wmf
}

,

1,

,

{

0

s

m

q

q

q

+

K

oleObject199.bin

image192.wmf
0

=

)

(

i

o

j

q

q

-

oleObject200.bin

image17.wmf
n

s

m

T

j

E

e

+

+

Î

image193.wmf
j

i

¹

oleObject201.bin

image194.wmf
i

m

i

r

s

r

i

o

j

x

y

q

q

ˆ

ˆ

=

)

(

1

=

1

=

å

å

+

-

-

b

oleObject202.bin

image195.wmf
j

i

=

oleObject203.bin

image196.wmf
s

m

j

s

m

i

+

+

,

1,

=

,

,

1,

=

K

K

oleObject204.bin

image197.wmf
i

m

i

r

s

r

x

y

ˆ

ˆ

=

1

=

1

=

å

å

+

-

b

g

oleObject205.bin

oleObject17.bin

image198.wmf
0

>

g

oleObject206.bin

image199.wmf
b

oleObject207.bin

image200.wmf
0

=

)

(

0

1

=

q

q

c

j

j

s

m

j

-

å

+

oleObject208.bin

image201.wmf
0

=

)

,

,

,

(

=

)

(

2

1

0

1

=

g

g

g

s

m

j

j

s

m

j

c

c

c

q

q

c

+

+

-

å

K

oleObject209.bin

image202.wmf
0

¹

g

oleObject210.bin

image18.wmf
j

image203.wmf
0

=

j

c

oleObject211.bin

image204.wmf
s

m

j

+

,

1,

=

K

oleObject212.bin

image205.wmf
}

,

1,

,

{

0

s

m

q

q

q

+

K

oleObject213.bin

image206.wmf
V

oleObject214.bin

image207.wmf
V

v

Î

oleObject215.bin

oleObject18.bin

image208.wmf
}

,

,

1

{

0

0

q

q

q

q

s

m

-

-

+

K

oleObject216.bin

image209.wmf
s

m

R

+

oleObject217.bin

image210.wmf
)

,

,

(

=

1

s

m

T

+

a

a

a

K

oleObject218.bin

image211.wmf
s

m

j

j

+

³

,

1,

=

0,

K

a

oleObject219.bin

image212.wmf
)

(

=

0

1

=

0

q

q

q

v

j

j

s

m

j

-

-

å

+

a

oleObject220.bin

image19.wmf
T

T

s

m

T

T

C

C

C

C

)

,

,

,

(

=

2

1

+

K

image213.wmf
1

>

1

=

j

s

m

j

a

å

+

oleObject221.bin

image214.wmf
g

a

g

g

a

>

=

)

(

=

)

(

1

=

1

=

0

1

=

j

s

m

j

j

s

m

j

j

s

m

j

q

v

å

å

å

+

+

+

-

oleObject222.bin

image215.wmf
g

b

=

ˆ

ˆ

=

ˆ

max

=

)

(

max

)

(

1

=

1

=

1

=

1

=

0

1

=

0

1

=

i

m

i

r

s

r

j

s

m

j

j

s

m

j

j

s

m

j

j

s

m

j

x

y

v

v

q

v

q

v

å

å

å

å

å

å

+

-

-

-

£

-

+

+

+

+

oleObject223.bin

image216.wmf
1

1

=

£

å

+

j

s

m

j

a

oleObject224.bin

image217.wmf
j

j

s

m

j

j

s

m

j

q

q

v

a

a

å

å

+

+

+

-

1

=

0

1

=

)

(1

=

oleObject225.bin

oleObject19.bin

image218.wmf
S

v

Î

oleObject226.bin

image219.wmf
})

,

1,

,

{

0

s

m

q

q

q

+

K

oleObject227.bin

image220.wmf
S

V

Í

oleObject228.bin

image221.wmf
S

oleObject229.bin

image222.wmf
S

oleObject230.bin

image20.wmf
s

r

y

y

y

y

x

x

R

r

j

r

j

n

j

n

s

m

,

1,

=

,

|

)

,

,

,

,

,

,

,

,

{(

=

1

=

1

1

1

K

K

K

K

³

å

l

l

l

image223.wmf
}.

),

,

(

<

)

ˆ

,

ˆ

(

|

)

,

{(

1

=

1

=

b

£

-

-

-

Î

-

å

å

+

i

m

i

r

s

r

s

m

x

y

Y

X

Y

X

R

Y

X

oleObject231.bin

image224.wmf
S

v

Î

oleObject232.bin

image225.wmf
.

=

)

ˆ

,

ˆ

(

>

)

,

,

,

(

)

ˆ

,

ˆ

(

=

)

(

=

)

(1

=

=

0

2

1

0

1

=

0

0

=

0

1

=

0

=

q

Y

X

Y

X

q

q

q

q

q

q

v

s

m

j

j

s

m

j

j

j

s

m

j

j

s

m

j

j

j

s

m

j

-

+

-

-

+

+

-

+

+

+

+

+

å

å

å

å

g

a

g

a

g

a

a

a

a

a

K

oleObject233.bin

image226.wmf
)

ˆ

,

ˆ

(

>

Y

X

v

-

oleObject234.bin

image227.wmf
b

g

g

a

£

å

å

+

+

=

=

1

=

1

=

j

s

m

j

j

s

m

j

v

oleObject235.bin

oleObject20.bin

image228.wmf
}.

),

ˆ

,

ˆ

(

>

)

,

(

|

)

,

{(

1

=

1

=

b

£

-

-

-

Î

-

Î

å

å

+

i

m

i

r

s

r

s

m

x

y

Y

X

Y

X

R

Y

X

v

oleObject236.bin

image229.wmf
}.

),

ˆ

,

ˆ

(

>

)

,

(

|

)

,

{(

)

,

(

1

=

1

=

b

£

-

-

-

Î

-

Î

-

å

å

+

i

m

i

r

s

r

s

m

x

y

Y

X

Y

X

R

Y

X

Y

X

oleObject237.bin

image230.wmf
)

ˆ

(

=

g

a

j

j

j

x

x

+

-

oleObject238.bin

image231.wmf
m

j

,

1,

=

K

oleObject239.bin

image232.wmf
s

j

y

y

j

j

j

m

,

1,

=

),

ˆ

(

=

K

g

a

-

+

oleObject240.bin

image21.wmf
m

i

x

x

i

j

i

j

n

j

,

1,

=

,

1

=

K

£

å

l

image233.wmf
1

0

£

£

j

a

oleObject241.bin

image234.wmf
).

ˆ

(

)

ˆ

(

=

1

=

1

=

1

=

g

g

a

j

j

s

j

j

j

m

j

j

s

m

j

y

y

x

x

-

+

+

-

å

å

å

+

oleObject242.bin

image235.wmf
0

>

ˆ

0,

>

ˆ

j

j

j

j

x

x

y

y

+

-

-

oleObject243.bin

image236.wmf
g

b

=

)

ˆ

ˆ

(

<

)

ˆ

ˆ

(

1

=

1

=

1

=

1

=

1

=

1

=

j

m

j

j

s

j

j

m

j

j

s

j

j

m

j

j

s

j

x

y

x

y

x

y

å

å

å

å

å

å

-

-

-

-

-

oleObject244.bin

image237.wmf
1.

<

)

ˆ

(

)

ˆ

(

=

1

=

1

=

1

=

g

g

a

j

j

s

j

j

j

m

j

j

s

m

j

y

y

x

x

-

+

+

-

å

å

å

+

oleObject245.bin

oleObject21.bin

image238.wmf
j

q

oleObject246.bin

image239.wmf
s

m

j

+

,

1,

=

K

oleObject247.bin

image240.wmf
)

(

0

1

=

0

q

q

q

j

j

s

m

j

-

+

å

+

a

oleObject248.bin

image241.wmf
)

,

,

,

(

2

1

0

g

a

g

a

g

a

s

m

q

+

+

K

oleObject249.bin

image242.wmf
)

ˆ

,

,

ˆ

,

ˆ

,

,

ˆ

(

)

ˆ

,

ˆ

(

1

1

1

1

g

g

g

g

g

s

s

m

m

y

y

y

y

x

x

x

x

Y

X

-

-

+

-

+

-

+

-

K

K

oleObject250.bin

image22.wmf
1

=

1

=

j

n

j

l

å

image243.wmf
)

,

(

=

)

ˆ

,

ˆ

(

)

,

(

)

ˆ

,

ˆ

(

Y

X

Y

X

Y

X

Y

X

-

-

+

-

+

-

oleObject251.bin

image244.wmf
j

j

s

m

j

j

s

m

j

j

j

s

m

j

q

q

q

Y

X

a

a

a

å

å

å

+

+

+

+

-

-

1

=

0

1

=

0

=

)

(1

=

=

)

,

(

oleObject252.bin

image245.wmf
S

Y

X

v

Î

-

)

,

(

=

oleObject253.bin

image246.wmf
)

(

)

,

(

V

Int

Y

X

p

p

Î

-

oleObject254.bin

image247.wmf
)

ˆ

,

ˆ

(

>

)

,

(

Y

X

Y

X

-

-

oleObject255.bin

oleObject22.bin

image248.wmf
)

,

(

Y

X

-

oleObject256.bin

image249.wmf
V

oleObject257.bin

image250.wmf
))

(

)),

(

(

(

=

)

,

(

Y

Y

Y

X

X

X

Y

X

p

p

w

w

-

+

-

+

-

-

*

*

l

l

oleObject258.bin

image251.wmf
*

l

oleObject259.bin

image252.wmf
WE

w

w

V

Y

X

Î

-

)

,

(

oleObject260.bin

image23.wmf
0

³

j

l

image253.wmf
.

))

(

)),

(

(

(

.

.

max

V

Y

Y

Y

X

X

X

t

s

p

p

Î

-

+

-

+

-

l

l

l

oleObject261.bin

image254.wmf
)

,

(

w

w

Y

X

-

oleObject262.bin

image255.wmf
WE

V

oleObject263.bin

image256.wmf
V

Y

X

Î

-

)

,

(

0

0

oleObject264.bin

image257.wmf
)

,

(

>

)

,

(

0

0

w

w

Y

X

Y

X

-

-

oleObject265.bin

oleObject23.bin

image258.wmf
IntV

Y

X

p

p

Î

-

)

,

(

oleObject266.bin

image259.wmf
)

ˆ

,

ˆ

(

>

)

,

(

Y

X

Y

X

p

p

-

-

oleObject267.bin

image260.wmf
)

ˆ

,

ˆ

(

>

)

,

(

Y

X

Y

X

-

-

oleObject268.bin

image261.wmf
)

ˆ

,

ˆ

(

>

)

,

(

Y

X

Y

X

w

w

-

-

oleObject269.bin

image262.wmf
)

{(

min

=

0

1

w

r

r

y

y

d

-

oleObject270.bin

image24.wmf
}

,

1,

=

n

j

K

image263.wmf
m

i

s

r

x

x

w

i

i

,

1,

=

,

,

1,

=

|

)

(

0

K

K

+

-

oleObject271.bin

image264.wmf
}

,

1,

=

,

,

1,

=

|

)

ˆ

(

),

ˆ

{(

min

=

2

m

i

s

r

x

x

y

y

d

i

w

i

r

w

r

K

K

+

-

-

oleObject272.bin

image265.wmf
0

>

e

oleObject273.bin

image266.wmf
1

<

d

e

oleObject274.bin

image267.wmf
2

<

d

e

oleObject275.bin

oleObject24.bin

image268.wmf
}

<

)

,

(

)

,

(

|

)

,

{(

=

)

,

(

e

e

w

w

s

m

w

w

Y

X

Y

X

R

Y

X

Y

X

N

-

-

-

Î

-

-

+

oleObject276.bin

image269.wmf
)

,

(

w

w

Y

X

N

Z

-

Î

e

oleObject277.bin

image270.wmf
e

e

<

<

w

r

r

y

z

-

-

oleObject278.bin

image271.wmf
e

e

+

-

w

r

r

w

r

y

z

y

<

<

oleObject279.bin

image272.wmf
1

<

d

e

oleObject280.bin

image25.wmf
(1)

image273.wmf
e

>

0

w

r

r

y

y

-

oleObject281.bin

image274.wmf
e

>

ˆ

r

w

r

y

y

-

oleObject282.bin

image275.wmf
0

<

<

ˆ

r

r

r

y

z

y

oleObject283.bin

image276.wmf
m

i

r

,

1,

=

,

1,

=

K

K

oleObject284.bin

image277.wmf
V

Z

Î

oleObject285.bin

oleObject25.bin

image278.wmf
0

<

<

ˆ

i

r

i

x

z

x

-

-

oleObject286.bin

image279.wmf
m

i

,

1,

=

K

oleObject287.bin

image280.wmf
V

Y

X

N

w

w

Í

-

)

,

(

e

oleObject288.bin

image281.wmf
0

>

e

oleObject289.bin

image282.wmf
)

,

(

w

w

Y

X

-

oleObject290.bin

image26.wmf
.

,

1,

=

0

,

,

1,

=

0

,

1,

=

0

1

=

,

1,

=

,

1,

=

.

.

)

,

,

,

,

,

(

max

1

=

1

=

1

=

1

1

s

r

y

m

i

x

n

j

m

i

x

x

s

r

y

y

t

s

y

y

x

x

r

i

j

j

n

j

i

j

i

j

n

j

r

j

r

j

n

j

s

m

K

K

K

K

K

K

K

³

³

³

£

³

-

-

å

å

å

l

l

l

l

image283.wmf
V

oleObject291.bin

image284.wmf
F

oleObject292.bin

image285.wmf
V

oleObject293.bin

image286.wmf
F

oleObject294.bin

image287.wmf
.

)

,

,

,

,

,

,

,

(

.

.

max

2

1

2

1

1

=

1

=

v

s

m

i

s

i

m

i

r

r

s

r

T

y

y

y

x

x

x

t

s

x

u

y

u

Î

-

+

å

å

K

K

oleObject295.bin

oleObject26.bin

image288.wmf
m

s

m

s

s

s

s

R

u

u

u

u

u

u

+

+

+

+

Î

)

,

,

,

,

,

,

,

(

2

1

2

1

K

K

oleObject296.bin

image289.wmf
)

,

,

,

,

,

,

,

(

2

1

2

1

m

s

s

s

s

u

u

u

u

u

u

+

+

+

K

K

oleObject297.bin

image290.wmf
)

,

(

w

w

Y

X

-

oleObject298.bin

image291.wmf
0.

,

)

,

(

)

,

(

)

,

(

.

.

max

³

Î

-

³

-

-

t

T

Y

X

Y

X

et

Y

X

t

s

t

v

w

w

oleObject299.bin

image292.wmf
.

,

1,

=

0,

0,

0

1

,

1,

=

0

,

1,

=

0

.

.

min

1

1

=

1

=

1

=

1

=

1

1

=

1

=

s

m

j

v

u

v

x

v

y

v

u

u

m

i

v

u

s

r

v

u

t

s

v

x

u

y

u

j

j

s

m

j

i

s

i

m

i

j

r

r

s

r

s

i

m

i

r

s

r

i

s

i

s

r

r

s

m

w

i

s

i

m

i

w

r

r

s

r

+

³

³

³

+

+

-

³

+

³

-

³

+

-

+

+

-

+

+

+

+

+

+

+

+

+

å

å

å

å

å

å

K

K

K

oleObject300.bin

image27.wmf
)

,

,

(

l

Y

X

image293.wmf
0

=

1

1

=

1

=

*

+

+

*

+

*

-

-

å

å

s

m

w

i

s

i

m

i

w

r

r

s

r

v

x

u

y

u

oleObject301.bin

image294.wmf
0

)

,

,

,

,

,

,

,

(

2

1

2

1

³

*

+

*

+

*

+

*

*

*

m

s

s

s

s

u

u

u

u

u

u

K

K

oleObject302.bin

image295.wmf
0

)

,

,

,

,

,

,

,

(

2

1

2

1

¹

*

+

*

+

*

+

*

*

*

m

s

s

s

s

u

u

u

u

u

u

K

K

oleObject303.bin

image296.wmf
V

oleObject304.bin

image297.wmf
)

,

,

,

,

,

,

,

(

=

)

,

,

,

,

,

,

,

(

2

1

2

1

2

1

2

1

*

+

*

+

*

+

*

*

*

+

+

+

m

s

s

s

s

m

s

s

s

s

u

u

u

u

u

u

u

u

u

u

u

u

K

K

K

K

oleObject305.bin

oleObject27.bin

image298.wmf
0

1

1

=

1

=

£

-

-

*

+

+

*

+

*

å

å

s

m

i

s

i

m

i

r

r

s

r

v

x

u

y

u

oleObject306.bin

image299.wmf
V

oleObject307.bin

image300.wmf
)

,

(

Y

X

-

oleObject308.bin

image301.wmf
)

,

(

Y

X

oleObject309.bin

image302.wmf
v

T

oleObject310.bin

image28.wmf
)

,

(

Y

X

-

image303.wmf
)

(

)

,

(

V

Int

Y

X

p

p

Î

-

oleObject311.bin

image304.wmf
s

m

p

p

E

Y

X

+

Î

-

)

,

(

oleObject312.bin

image305.wmf
AL

v

oleObject313.bin

image306.wmf
)

,

(

*

*

-

Y

X

oleObject314.bin

image307.wmf
)

,

(

*

*

-

Y

X

oleObject315.bin

oleObject28.bin

image308.wmf
AL

AL

AL

w

w

v

Y

X

Y

X

=

)

,

(

=

)

,

(

-

-

oleObject316.bin

image309.wmf
s

m

+

oleObject317.bin

image310.wmf
S

S

=

0

oleObject318.bin

image311.wmf
V

oleObject319.bin

oleObject320.bin

image312.wmf
S

image29.wmf
)

,

,

(

*

*

*

l

Y

X

oleObject321.bin

image313.wmf
S

S

=

0

oleObject322.bin

image314.wmf
0

=

k

oleObject323.bin

image315.wmf
k

oleObject324.bin

image316.wmf
k

oleObject325.bin

image317.wmf
0

³

k

oleObject29.bin

oleObject326.bin

image318.wmf
1

oleObject327.bin

image319.wmf
4

oleObject328.bin

image320.wmf
k

S

oleObject329.bin

image321.wmf
V

oleObject330.bin

image322.wmf
V

S

k

=

image30.wmf
(2)

oleObject331.bin

image323.wmf
k

S

oleObject332.bin

image324.wmf
V

oleObject333.bin

image325.wmf
)

,

(

k

k

Y

X

-

oleObject334.bin

image326.wmf
)

,

(

k

k

Y

X

-

oleObject335.bin

image327.wmf
V

oleObject30.bin

oleObject336.bin

image328.wmf
))

,

(

=

)

,

(

k

k

w

w

Y

X

Y

X

-

-

oleObject337.bin

image329.wmf
)

,

(

w

w

Y

X

-

oleObject338.bin

image330.wmf
)

,

(

=

)

,

(

k

k

Y

X

Y

X

-

-

oleObject339.bin

image331.wmf
}

|

)

,

{(

=

1

1

=

1

=

1

*

+

+

*

+

*

+

+

£

-

Î

-

Ç

å

å

s

m

i

s

i

m

i

r

r

s

r

s

m

k

k

v

x

u

y

u

R

Y

X

S

S

oleObject340.bin

image332.wmf
)

,

,

,

,

,

,

,

(

2

1

2

1

*

+

*

+

*

+

*

*

*

m

s

s

s

s

u

u

u

u

u

u

K

K

image31.wmf
)

,

,

(

l

Y

X

oleObject341.bin

image333.wmf
)

,

(

w

w

Y

X

-

oleObject342.bin

image334.wmf
k

S

oleObject343.bin

image335.wmf
1

+

k

S

oleObject344.bin

image336.wmf
1

+

k

S

oleObject345.bin

image337.wmf
1

=

+

k

k

oleObject31.bin

oleObject346.bin

image338.wmf
1

+

k

S

oleObject347.bin

image339.wmf
)

,

(

k

k

Y

X

-

oleObject348.bin

image340.wmf
1

+

k

S

oleObject349.bin

image341.wmf
1

+

Ì

k

S

V

oleObject350.bin

image342.wmf
j

S

image32.wmf
)

,

(

)

,

(

*

*

Y

X

Y

X

-

³

-

oleObject351.bin

image343.wmf
k

j

K

0,1,

=

oleObject352.bin

image344.wmf
0

1

1

,

,

S

S

S

S

V

k

k

Ì

Ì

Ì

Ì

-

K

oleObject353.bin

image345.wmf
0

³

k

oleObject354.bin

oleObject355.bin

image346.wmf
0

³

k

oleObject356.bin

oleObject32.bin

image347.wmf
V

S

k

=

oleObject357.bin

image348.wmf
)

,

(

|

)

,

{(

=

Y

X

Y

X

E

-

-

oleObject358.bin

image349.wmf
k

S

oleObject359.bin

image350.wmf
)}

ˆ

,

ˆ

(

>

)

,

(

Y

X

Y

X

-

-

oleObject360.bin

image351.wmf
E

oleObject361.bin

image33.wmf
)

,

(

)

,

(

*

*

Y

X

Y

X

-

¹

-

image352.wmf
=

V

oleObject362.bin

image353.wmf
)

(

}

),

ˆ

,

ˆ

(

>

)

,

(

|

)

,

{(

=

=

1

0

=

1

=

1

=

n

k

n

i

m

i

r

s

r

s

m

k

H

x

y

Y

X

Y

X

R

Y

X

V

S

-

+

Ç

Ç

£

-

-

-

Î

-

å

å

b

oleObject363.bin

image354.wmf
1

,

0,1,

=

-

k

n

K

oleObject364.bin

image355.wmf
}

)

,

(

0,

|

)

,

{(

=

1

1

=

1

=

v

n

s

m

i

n

i

s

m

i

r

n

r

s

r

s

m

n

T

Y

X

v

x

u

y

u

R

Y

X

H

Î

£

-

-

Î

-

+

+

+

+

å

å

oleObject365.bin

image356.wmf
)

,

,

,

,

,

(

1

1

n

m

s

n

s

n

s

n

u

u

u

u

+

+

K

K

oleObject366.bin

oleObject33.bin

image357.wmf
)

,

(

w

w

Y

X

-

oleObject367.bin

image358.wmf
WE

v

n

s

m

i

n

i

s

m

i

r

n

r

s

r

s

m

V

T

Y

X

v

x

u

y

u

R

Y

X

Í

Î

£

-

-

Î

-

+

+

+

+

å

å

}

)

,

(

0,

|

)

,

{(

1

1

=

1

=

oleObject368.bin

image359.wmf
E

Y

X

Î

-

)

,

(

oleObject369.bin

image360.wmf
)

,

(

Y

X

-

oleObject370.bin

image361.wmf
V

S

k

=

oleObject371.bin

image34.wmf
v

T

Y

X

Î

)

,

(

*

*

image362.wmf
)

ˆ

,

ˆ

(

>

)

,

(

Y

X

Y

X

-

-

oleObject372.bin

image363.wmf
s

m

+

oleObject373.bin

image364.wmf
)

,

(

=

)

,

(

Y

X

Y

X

-

-

oleObject374.bin

image365.wmf
n

s

m

i

n

i

s

m

i

r

n

r

s

r

i

m

i

r

s

r

v

x

u

y

u

x

y

1

1

=

1

=

1

=

1

=

,

+

+

+

£

-

£

-

å

å

å

å

b

oleObject375.bin

image366.wmf
1

,

0,1,

=

-

k

n

K

oleObject376.bin

oleObject34.bin

image367.wmf
WE

V

Y

X

Î

-

)

,

(

oleObject377.bin

image368.wmf
E

V

Y

X

Î

-

)

,

(

oleObject378.bin

image369.wmf
)

,

(

Y

X

-

oleObject379.bin

image370.wmf
E

V

oleObject380.bin

image371.wmf
)

,

(

Y

X

-

oleObject381.bin

oleObject35.bin

image372.wmf
)

,

(

)

,

(

Y

X

Y

X

-

£

-

oleObject382.bin

image373.wmf
)

,

(

)

,

(

Y

X

Y

X

-

¹

-

oleObject383.bin

image374.wmf
}

=

|

{

=

11

j

j

y

y

j

I

oleObject384.bin

image375.wmf
}

|

{

=

12

j

j

y

y

j

I

¹

oleObject385.bin

image376.wmf
}

=

|

{

=

21

j

j

x

x

j

I

oleObject386.bin

image35.wmf
)

,

(

*

*

Y

X

image377.wmf
}

|

{

=

22

j

j

x

x

j

I

¹

oleObject387.bin

image378.wmf
12

I

j

Î

oleObject388.bin

image379.wmf
0

>

=

j

j

j

y

y

n

-

oleObject389.bin

image380.wmf
22

I

j

Î

oleObject390.bin

image381.wmf
0

>

=

j

j

j

x

x

m

+

-

oleObject391.bin

oleObject36.bin

image382.wmf
0

>

M

oleObject392.bin

image383.wmf
j

j

j

y

M

n

y

ˆ

>

-

oleObject393.bin

image384.wmf
j

j

j

x

M

m

x

ˆ

<

+

oleObject394.bin

image385.wmf
j

new

j

y

y

=

oleObject395.bin

image386.wmf
11

I

j

Î

oleObject396.bin

image36.wmf
v

T

image387.wmf
M

n

y

y

j

j

new

j

-

=

oleObject397.bin

image388.wmf
12

I

j

Î

oleObject398.bin

image389.wmf
j

new

j

x

x

=

oleObject399.bin

image390.wmf
21

I

j

Î

oleObject400.bin

image391.wmf
M

m

x

x

j

j

new

j

+

=

oleObject401.bin

image1.wmf
R

Z

Î

oleObject37.bin

image392.wmf
22

I

j

Î

oleObject402.bin

image393.wmf
0

>

=

j

j

j

y

n

y

+

oleObject403.bin

image394.wmf
j

j

y

y

I

j

=

,

11

Î

oleObject404.bin

image395.wmf
12

I

j

Î

oleObject405.bin

image396.wmf
0

>

=

j

j

j

x

m

x

+

-

oleObject406.bin

oleObject38.bin

image397.wmf
21

I

j

Î

oleObject407.bin

image398.wmf
j

j

x

x

=

oleObject408.bin

image399.wmf
22

I

j

Î

oleObject409.bin

image400.wmf
j

new

j

j

y

M

y

M

M

y

1

1

1

=

+

+

+

oleObject410.bin

image401.wmf
j

new

j

j

x

M

x

M

M

x

1

1

1

=

+

+

+

oleObject411.bin

image37.wmf
)

,

(

*

*

Y

X

image402.wmf
)

,

(

1

)

,

(

1

1

=

)

,

(

new

new

Y

X

M

M

Y

X

M

Y

X

-

+

+

-

+

-

oleObject412.bin

image403.wmf
1

<

1

1

<

0

+

M

oleObject413.bin

image404.wmf
)

,

(

Y

X

-

oleObject414.bin

image405.wmf
V

Y

X

Î

-

)

,

(

oleObject415.bin

image406.wmf
V

Y

X

new

new

Î

-

)

,

(

oleObject416.bin

oleObject39.bin

image407.wmf
)

,

(

=

Y

X

v

-

oleObject417.bin

image408.wmf
k

S

V

=

oleObject418.bin

image409.wmf
E

V

Y

X

Î

-

)

,

(

oleObject419.bin

image410.wmf
=

)

,

(

E

V

Y

X

Î

-

oleObject420.bin

image411.wmf
V

V

Í

=

oleObject421.bin

image38.wmf
v

T

image412.wmf
)

,

(

Y

X

-

oleObject422.bin

image413.wmf
=

V

oleObject423.bin

image414.wmf
)

,

(

Y

X

-

oleObject424.bin

image415.wmf
=

V

oleObject425.bin

image416.wmf
)

,

(

Y

X

-

oleObject426.bin

oleObject40.bin

image417.wmf
k

S

V

=

oleObject427.bin

image418.wmf
V

Y

X

Y

X

Î

-

-

)

,

(

),

,

(

2

2

1

1

oleObject428.bin

image419.wmf
R

Î

a

oleObject429.bin

image420.wmf
1

<

<

0

a

oleObject430.bin

image421.wmf
)

,

)(

(1

)

,

(

=

)

,

(

2

2

1

1

Y

X

Y

X

Y

X

-

-

+

-

-

a

a

oleObject431.bin

image39.wmf
)

(

i

image422.wmf
)

,

(

Y

X

-

oleObject432.bin

image423.wmf
=

V

oleObject433.bin

image424.wmf
s

m

m

s

s

s

s

R

u

u

u

u

u

u

+

+

+

+

Î

)

,

,

,

,

,

,

,

(

2

1

2

1

K

K

oleObject434.bin

image425.wmf
0

>

)

,

,

,

,

,

,

,

(

2

1

2

1

m

s

s

s

s

u

u

u

u

u

u

+

+

+

K

K

oleObject435.bin

image426.wmf
)

,

(

Y

X

-

oleObject436.bin

oleObject41.bin

image427.wmf
.

)

,

,

,

,

,

,

,

(

.

.

max

2

1

2

1

1

=

1

=

V

y

y

y

x

x

x

t

s

x

u

y

u

s

m

i

s

i

m

i

r

r

s

r

Î

-

-

-

-

+

å

å

K

K

oleObject437.bin

image428.wmf
V

oleObject438.bin

image429.wmf
)

,

(

Y

X

-

oleObject439.bin

image430.wmf
V

Y

X

Y

X

Î

-

-

)

,

(

),

,

(

2

2

1

1

oleObject440.bin

image431.wmf
i

s

i

m

i

r

r

s

r

i

s

i

m

i

r

r

s

r

x

u

y

u

x

u

y

u

+

+

å

å

å

å

-

-

1

=

1

=

1

1

=

1

1

=

<

oleObject441.bin

oleObject42.bin

image432.wmf
i

s

i

m

i

r

r

s

r

i

s

i

m

i

r

r

s

r

x

u

y

u

x

u

y

u

+

+

å

å

å

å

-

-

1

=

1

=

2

1

=

2

1

=

<

oleObject442.bin

image433.wmf
1

<

<

0

a

oleObject443.bin

image434.wmf
i

s

i

m

i

r

r

s

r

i

s

i

m

i

r

r

s

r

i

s

i

m

i

r

r

s

r

x

u

y

u

x

u

y

u

x

u

y

u

+

+

+

å

å

å

å

å

å

-

-

-

+

-

1

=

1

=

2

1

=

2

1

=

1

1

=

1

1

=

<

)

)(

(1

)

(

a

a

oleObject444.bin

image435.wmf
)

,

)(

(1

)

,

(

=

)

,

(

2

2

1

1

Y

X

Y

X

Y

X

-

-

+

-

-

a

a

oleObject445.bin

image436.wmf
i

s

i

m

i

r

r

s

r

x

u

y

u

+

å

å

-

1

=

1

=

oleObject446.bin

image40.wmf
(2)

image437.wmf
)

,

(

Y

X

-

oleObject447.bin

image438.wmf
k

S

oleObject448.bin

image439.wmf
1

DMU

oleObject449.bin

image440.wmf
2

DMU

oleObject450.bin

image441.wmf
3

DMU

oleObject451.bin

oleObject1.bin

oleObject43.bin

image442.wmf
4

DMU

oleObject452.bin

image443.wmf
5

DMU

oleObject453.bin

image444.wmf
6

DMU

oleObject454.bin

image445.wmf
7

DMU

oleObject455.bin

image446.wmf
*

BCC

q

oleObject456.bin

oleObject44.bin

image447.wmf
0.

0,

0

0,

0,

0,

0,

0,

0,

1

=

0

2

8

7

6

5

3

0

3

6

5

4

2

.

)

,

(

max

1

1

7

6

5

4

3

2

1

7

6

5

4

3

2

1

1

7

6

5

4

3

2

1

1

7

6

5

4

3

2

1

1

1

³

³

³

³

³

³

³

³

³

+

+

+

+

+

+

³

-

+

+

+

+

+

+

£

-

+

+

+

+

+

+

-

y

x

y

x

t

s

y

x

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

oleObject457.bin

image448.wmf
6

=

,7}

1,

=

|

{

max

=

1

1

-

-

K

j

x

v

j

AL

oleObject458.bin

image449.wmf
1

=

,7}

1,

=

|

{

min

=

1

2

K

j

y

v

j

AL

oleObject459.bin

image450.wmf
AL

v

oleObject460.bin

image451.wmf
6,1)

(

=

)

,

(

2

1

-

v

v

oleObject461.bin

image41.wmf
v

T

image452.wmf
6.5,0.5).

(

=

)

ˆ

,

ˆ

(

-

-

Y

X

oleObject462.bin

image453.wmf
V

oleObject463.bin

image454.wmf
1

1

1

2

2

1

6.5

,

0.5

|

)

,

{(

=

x

v

y

v

v

v

V

-

£

£

-

£

£

oleObject464.bin

image455.wmf
)

,

(

1

1

y

x

oleObject465.bin

image456.png
(68)

Lzy

{(1;1

i [FET]

10 15

20

25

image457.wmf
1

=

k

oleObject45.bin

oleObject466.bin

image458.wmf
3

=

b

oleObject467.bin

image459.wmf
1

1

1

1

0

6.5

,

0.5

|

)

,

{(

=

x

y

y

x

S

-

£

-

£

-

oleObject468.bin

image460.wmf
3}

1

1

£

-

x

y

oleObject469.bin

image461.png
(65251

image462.wmf
0

S

oleObject470.bin

oleObject46.bin

image463.wmf
)

,

(

1

1

y

x

oleObject471.bin

image464.wmf
0

S

oleObject472.bin

image465.wmf
(2.5,0.5)}

6.5,9.5),

(

6.5,0.5),

{(

-

-

oleObject473.bin

image466.wmf
6.5,

=

9.5,

=

6)

(

0.5

3

=

2.5,

=

6

6.5

3

=

0.5,

=

6.5,0.5),

(

=

2

1

2

2

1

1

1

2

0

-

-

-

+

-

-

-

q

q

q

q

q

oleObject474.bin

image467.wmf
(2.5,0.5)

=

1

q

oleObject475.bin

image42.wmf
v

T

image468.wmf
6.5,9.5)

(

=

2

-

q

oleObject476.bin

image469.wmf
V

oleObject477.bin

image470.wmf
6.5,9.5)

(

=

)

,

(

1

1

-

-

Y

X

oleObject478.bin

image471.wmf
)

,

(

w

w

Y

X

-

oleObject479.bin

image472.wmf
AL

v

oleObject480.bin

oleObject47.bin

image473.wmf
6,1)

(

=

)

,

(

2

1

-

v

v

oleObject481.bin

image474.wmf
(2,5,4)

=

)

,

,

(

*

*

*

t

y

x

oleObject482.bin

image475.wmf
6,1)

0.5(

2,5)

0.5(

=

)

,

0.5(

)

,

0.5(

=

)

,

(

2

1

-

+

-

+

-

-

*

*

AL

AL

p

p

v

v

y

x

Y

X

oleObject483.bin

image476.wmf
4,3)

(

=

)

,

(

-

-

p

p

Y

X

oleObject484.bin

image477.wmf
6.5,9.5)

(

=

)

,

(

=

)

,

(

1

1

-

-

-

Y

X

Y

X

oleObject485.bin

image43.wmf
v

T

Y

X

Î

)

,

(

image478.wmf
4,3)

(

=

)

,

(

-

-

p

p

Y

X

oleObject486.bin

image479.wmf
0.76

=

*

l

oleObject487.bin

image480.wmf
5.9,7.92)

(

=

)

,

(

-

-

w

w

Y

X

oleObject488.bin

image481.wmf
5.9,7.92)

(

=

)

,

(

-

-

w

w

Y

X

oleObject489.bin

image482.wmf
0.57

=

1

*

u

oleObject490.bin

oleObject48.bin

image483.wmf
2

=

0.43,

=

3

2

*

*

v

u

oleObject491.bin

image484.wmf
2

0.43

0.57

1

1

£

-

x

y

oleObject492.bin

image485.wmf
2}.

0.43

3,0.57

,

6.5

,

0.5

|

)

,

{(

=

1

1

1

1

1

1

1

1

1

£

-

£

-

-

£

-

£

-

x

y

x

y

x

y

y

x

S

oleObject493.bin

image486.wmf
1

S

oleObject494.bin

image487.wmf
}

6.5,8.375)

(

(2.5,0.5),

2,5),

(

6.5,0.5),

{(

-

-

-

oleObject495.bin

image44.wmf
)

,

(

)

,

(

*

*

Y

X

Y

X

-

³

-

image488.wmf
2

=

k

oleObject496.bin

image489.wmf
V

oleObject497.bin

image490.wmf
6.5,8.375)

(

=

)

,

(

2

2

-

-

Y

X

oleObject498.bin

image491.png

image492.wmf
)

,

(

p

p

Y

X

-

oleObject499.bin

image493.wmf
)

,

(

w

w

Y

X

-

