
Journal of Mathematical Extension
Vol. 12, No. 1, (2018), 91-112
ISSN: 1735-8299

URL: http://www.ijmex.com

Absolutely Extendable Property and Stable
Elements in Γ-Semihyperrings

S. Ostadhadi Dehkordi
University of Hormozgan

M. Heidari
Bu-Ali Sina University

B. Davvaz∗

Yazd University

Abstract. The concept of Γ-semihyperrings is a generalization of
a semiring, a generalization of a Γ-semiring, and a generalization of a
semihyperering. In this paper, we define the notions of complex product,
extension property and flat Γ-semihyperrings and some of their proper-
ties are obtained. In addition, we prove that every flat Γ-semihyperring
is absolutely extendable. Finally, we give some characterization of stable
elements.

AMS Subject Classification: 16Y99; 20N20
Keywords and Phrases: Γ-semihyperrings, absolutely extendable,
stable elements, complex product, extension property

1. Introduction

The theory of hyperstructures was introduced by Marty [17] in 1934
during the 8th Congress of the Scandinavian Mathematicians. Algebraic
hyperstructures are a generalization of classical algebraic structures. In

Received: February 2017; Accepted: July 2017
∗Corresponding author

91

Journal of Mathematical Extension
Vol. 12, No. 1, (2018), 91-112
ISSN: 1735-8299

URL: http://www.ijmex.com

Absolutely Extendable Property and Stable
Elements in Γ-Semihyperrings

S. Ostadhadi Dehkordi
University of Hormozgan

M. Heidari
Bu-Ali Sina University

B. Davvaz∗

Yazd University

Abstract. The concept of Γ-semihyperrings is a generalization of
a semiring, a generalization of a Γ-semiring, and a generalization of a
semihyperering. In this paper, we define the notions of complex product,
extension property and flat Γ-semihyperrings and some of their proper-
ties are obtained. In addition, we prove that every flat Γ-semihyperring
is absolutely extendable. Finally, we give some characterization of stable
elements.

AMS Subject Classification: 16Y99; 20N20
Keywords and Phrases: Γ-semihyperrings, absolutely extendable,
stable elements, complex product, extension property

1. Introduction

The theory of hyperstructures was introduced by Marty [17] in 1934
during the 8th Congress of the Scandinavian Mathematicians. Algebraic
hyperstructures are a generalization of classical algebraic structures. In

Received: February 2017; Accepted: July 2017
∗Corresponding author

91



92 S. OSTADHADI DEHKORDI, M. HEIDARI AND B. DAVVAZ

a classical algebraic structure the composition of two elements is an
element, while in an algebraic hyperstructure the composition of two
elements is a non-empty set.
Let H be a non-empty set. Then, the map ◦ : H × H −→ P∗(H) is
called a hyperoperation, where P∗(H) is the family of non-empty subsets
of H. (H, ◦) is called a semihypergroup if for every x, y ∈ H, we have
x ◦ (y ◦ z) = (x ◦ y) ◦ z. If for every x ∈ H, x ◦ H = H = H ◦ x, then
(H, ◦) is called a hypergroup. In the above definition, if A and B are two
non-empty subsets of H and x ∈ H, then we define

A ◦B =


a∈A,b∈B
a ◦ b, x ◦A = {x} ◦A and A ◦ x = A ◦ {x}.

Since then, hundreds of papers and several books have been written on
this topic; see [2, 3, 6, 20]. A recent book on hyperstructures points
out on their applications in cryptography, codes, automata, probability,
geometry, lattices, binary relations, graphs and hypergraphs. Another
book [6] is devoted especially to the study of hyperring theory; sev-
eral kinds of hyperrings are introduced and analyzed, and the volume
ends with an outline of applications in chemistry and physics, analyzing
several special kinds of hyperstructures: e-hyperstructures and trans-
position hypergroups. A well known type of a hyperring is called the
Krasner hyperring [16] and then some researchers such as Davvaz et
al. [1, 5, 4, 7, 8, 14, 15, 18, 22], Gontineac [13], Sen and Dasgupta [19],
Vougiouklis [20, 21] and others followed him.

Definition 1.1. A Krasner hyperring is an algebraic structure (R,+, ·)
which satisfies the following axioms:

(1) (R,+) is a canonical hypergroup, i.e.,

(i) for every x, y, z ∈ R, x+ (y + z) = (x+ y) + z,

(i) for every x, y ∈ R, x+ y = y + x,

(iii) there exists 0 ∈ R such that 0 + x = x.

(iv) for every x ∈ R there exists a unique element −x ∈ R such
that 0 ∈ x+ (−x).

(v) z ∈ x+ y implies that y ∈ −x+ z and x ∈ −y + z.
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(2) Relating to the multiplication, (R, ·) is a semigroup having zero as
a bilaterally absorbing element,

(3) The multiplication is distributive with respect to the hyperopera-
tion +.

Recently, the concept of Γ-hyperstructures such as Γ-semihypergroups,
Γ-hypergroups, Γ-semihyperrings and Γ-hypermodules study by many
resechers. The concept of Γ-semihyperrings is a generalization of semi-
hyperrings, generalization of a Γ-semirings and a generalization of semir-
ings. This concept consider by Dehkordi and Davvaz [9, 10, 11, 12]. They
introduced rough ideals, fundamental relations and complex product on
Γ-semihyperrings. By the concept fundamental relation on Γ-semihyperrings
they introduced covariant functor between the category Γ-semihyperrings
and the category semirings.
We know that homological algebra is a efficient toll in the study of rings
and modules. This research work deals with certain algebraic systems
that is non-additive modification of classical homological structure. Mo-
tivated by the definition of flat rings in the category of rings, we define
flat Γ-semihyperrings in the category of Γ-semihyperrings. We introduce
the notions of complex systems on Γ-semihypergroups, then we prove
some results in respect. Also, we introduce the notions of right(left)
flat Γ-semihyperring, extension property and absolutely extendable. We
prove that every flat Γ-semihyperring is absolutely extendable. Finally,
we obtain a characterization of stable elements in Γ-semihyperrings.

2. Γ-Semihyperrings and Complex Product

In [10, 11], Dehkordi and Davvaz introduced the concept of Γ-semihyper-
rings. Now, in this section, we shall explain more about Γ-semihyperrings.
We investigate the concept of left (right) Γ-funs and complex product.

Definition 2.1. Let R and Γ be additive hypergroup and semihyper-
group, respectively. Then, R is called a Γ-semihyperring if there exists
a hyperoperation R× Γ×R −→ P∗(R)(the image of (x, α, y) is denoted
by xαy, for x, y ∈ R and α, β ∈ Γ) satisfies the following conditions:
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(1) x1α(x2 + x3) = x1αx2 + x1αx3,

(2) (x1 + x2)αx3 = x1αx3 + x2αx3,

(3) x1(α+ β)x2 = x1αx2 + x1βx2,

(4) (x1αx2)βx3 = x1α(x2βx3),

for all x1, x2, x3 ∈ R and α ∈ Γ.
A Γ-semihyperring R is called Γ-hyperring if R is a canonical hyper-
group. It is obvious that every Krasner hyperring is a Γ-hyperring where
xαy denotes the product of the elements x, y ∈ R.

Example 2.2. Let R = {a, b} and Γ = {α, β} be two sets with the
following operations and hyperoperation. Then, R is a Γ-hyperring.

+ a b

a a R
b R b

α a b

a a a
b a a

β a b

a a a
b a R

+ α β

α α α
β α R

Example 2.3. Let S = {a1, a2, a3, a4}, Γ = {α, β}. Then, S is a Γ-
semihyperring with respect to the following operations and hyperopera-
tions:

⊕ a1 a2 a3 a4
a1 a1 a2 {a3, a4} {a3, a4}
a2 a2 a2 S S
a3 {a3, a4} S {a3, a4} {a3, a4}
a4 {a3, a4} S {a3, a4} {a3, a4}

β a1 a2 a3 a4
a1 a1 a1 a1 a1
a2 a1 a2 {a3, a4} {a3, a4}
a3 a1 a2 {a3, a4} {a3, a4}
a4 a1 a2 {a3, a4} {a3, a4}

+ α β
α α β
β α β

for every x, y ∈ S, xαy = a1.
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Example 2.4. Let R be the Krasner hyperring, Rm×n be of all matrices
over R and Γ be additive semihypergroup of all n × m matrices over
R. Then, Rn×m is a Γ-hyperring where aαb denoted the usual matrix
product of a, α, b where a, b ∈ Rm×n and α ∈ Γ.

Example 2.5. Let R be the set of real numbers. Then, R is a Z-
semihyperring with respect to the following hyperaddition and hyperop-
eration:

x1 ⊕ x2 = {z : [x1] + [x2]  z < [x1] + [x2] + 1},
x1αx2 = {z : α[x1][x2]  z < α[x1][x2] + 1},

for every x1, x2 ∈ R and α ∈ Z, where Z = {α : α ∈ Z}.

Let A and B be non-empty subsets of Γ-semihyperring R. We define

AΓ

B =


x ∈ R : x ∈

n
i=1

aiαibi : ai ∈ A, bi ∈ B,n ∈ N

.

Let Γ be a semihypergroup and n be a nonzero natural number. Then,
we say that

xβny ⇐⇒ ∃x1, x2, · · · , xn ∈ Γ : {x, y} ⊆
n

i=1

xi.

Let β =

n1 βn. Clearly, the relation β is reflexive and symmetric. De-

note by β∗ the transitive closure of β.
Let R be a Γ-semihyperring and U be a finite sum of elements of R. We
define a relation γ on R as follows:

(a, b) ∈ γ ⇐⇒ a, b ∈ u,

where u ∈ U = UR

RΓ

R

(UR + RΓ


R). We denote the transitive

closure γ by γ∗ and this equivalence relation is called fundamental equiv-
alence relation on R. We denote the equivalence class of the element a
by γ∗(a). Hence, γ∗(a1) = γ∗(a2) if and only if there exist x1, x2, . . . xn+1

with x1 = a1, xn+1 = a2 and u1, u2, . . . un ∈ U such that {xi, xi+1} ⊆ ui,
for some i ∈ {1, 2, . . . n}.
Let R be a Γ-semihyperring. We define a relation θ on

 n
i=1

(γ∗(xi), β∗(αi)) : n ∈ N, xi ∈ R,αi ∈ Γ

,
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as follows:

 n
i=1

(γ∗(xi), β∗(αi)),
m
j=1

(γ∗(x

j), β

∗(α

j))

∈ θ

⇐⇒
n
i=1

γ∗(xi)β∗(αi)γ∗(x) =
m
j=1

γ∗(x

j)
β∗(αj)γ∗(x),

for every γ∗(x) ∈ [R : γ∗], where γ∗ is a fundamental relation on R.
Let R be a Γ-semihyperring and there exists an element

θ
 n
i=1

(γ∗(ei), β∗(δi))

,

such that
n
i=1

γ∗(ei)β∗(δi)γ∗(x) = γ∗(x), for all γ∗(x) ∈ [R : γ∗]. We say

that this element is an identity element(or just an identity)) of F (R)
and F (R) is a Γ-semihyperring with identity.

Let F (R) =

θ
 n
i=1

(γ∗(xi), β∗(αi))

: xi ∈ R,αi ∈ Γ, n ∈ N


and S be

a non-empty set. We say that S is a left Γ-fun if there exists an action

F (R)× S −→ S
θ
 n
i=1

(γ∗(xi), β∗(αi))

, y


−→ θ
 n
i=1

(γ∗(xi), β∗(αi))

y,

with the following property:

θ

i,j
(γ∗(xi)β∗(αi)γ∗(yj)), β∗(γj)


y

= θ
 n
i=1

(γ∗(xi), β∗(αi))

θ
 m
j=1

(γ∗(yj), β∗(γj)

y

,


θ
 n
i=1

(γ∗(ei), β∗(δi))

, s

= s,

where θ
 n
i=1

(γ∗(xi), β∗(αi))

, θ
 m
j=1

(γ∗(yj), β∗(γj))

are elements of F (R)

and s ∈ S. In the same way, we can define right Γ-fun. Also, if R1 and R2

are Γ1- and Γ2- semihyperrings respectively, we say that S is a (Γ1,Γ2)-
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fun if it is a left Γ1-fun and a right Γ2-fun, and

θ
 n
i=1

(γ∗(xi), β∗(αi))

y

θ
 m
j=1

(γ∗(yj), β∗(γj))


= θ
 n
i=1

(γ∗(xi), β∗(αi))

yθ
 m
j=1

(γ∗(yj), β∗(γj))

,

where θ
 n
i=1

(γ∗(xi), β∗(αi))

∈ F (R1), θ

 m
j=1

(γ∗(yj), β∗(γj))

∈ F (R2).

It is clear that the cartesian product X1×X2 of a left Γ1- fun X1 and a
right Γ2-fun X2 becomes (Γ1,Γ2)-fun if we make the obvious definition:

θ
 n
i=1

(γ∗(xi), β∗(αi))

(x1, x2) =


θ
 n
i=1

(γ∗(xi), β∗(αi))

x1, x2


,

(x1, x2)θ
 n
i=1

(γ∗(xi), β∗(αi))

=

x1, x2θ

 n
i=1

(γ∗(xi), β∗(αi))

.

Suppose that A is a (Γ1,Γ2)-fun and B is a (Γ2,Γ3)-fun. Hence, A×B

is a (Γ1,Γ3)-fun. A map ϕ : A×B −→ C is called a (Γ1,Γ3)-map if for

all a ∈ A, b ∈ B and θ
 n
i=1

(γ∗(xi), β∗(αi))

∈ F (R2),

ϕ

aθ
 n
i=1

(γ∗(xi), β∗(αi))

, b

= ϕ


a, θ

 n
i=1

(γ∗(xi), β∗(αi))

b

.

Example 2.6. Let R be a Γ-semihyperring, S be the set of all one-one
and onto functions on F (R). Then, S is a left Γ-fun.

Example 2.7. Let I be an ideal of Γ-semihyperring R. Then,

T (I) =

θ
 n
i=1

(γ∗(xi), β∗(αi))

∈ F (R) :

ω

θ
 n
i=1

(γ∗(xi), β∗(αi))


⊆ γ∗(I)

,

is a left Γ-fun, where

ω

θ
 n
i=1

(γ∗(xi), β∗(αi))


=


i γ
∗(xi)β∗(αi)γ∗(x) : 1  i  n, x ∈ R


.
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We say that (Γ1,Γ3)-fun C is a complex product of A and B over F (R2)
if there is a (Γ1,Γ3)-map ϕ : A× B −→ C such that for every (Γ1,Γ3)-
fun D and every (Γ1,Γ3)-map β : A × B −→ D there exists a unique
(Γ1,Γ3)-map β : C −→ D such that β ◦ ϕ = β.
Suppose that ρ∗ is an equivalence relation on A × B generated by the
following relation:

ρ =


aθ
 n
i=1

(γ∗(xi), β∗(αi)), b

,

a, θ

 n
i=1

(γ∗(xi), β∗(αi))b


: a ∈ A, b ∈ B, θ
 n
i=1

(γ∗(xi), β∗(αi))

∈ F (R2)


.

We define C(A,B) = [A×B : ρ∗] and denote a typical element ρ∗(a, b)
of C(A,B) by C(a, b). By definition of ρ we have that

C

aθ
 n
i=1

(γ∗(xi), β∗(αi))

, b

= C


a, θ

 n
i=1

(γ∗(xi), β∗(αi))

b

,

for all a ∈ A and b ∈ B.

Proposition 2.7. Let A be a (Γ1,Γ2)-fun and B be a (Γ2,Γ3)-fun. Then,
C(A,B) is a complex product of A and B over F (R2).

Theorem 2.8. The complex product of A and B over F (R2) is unique
up to isomorphism.

3. Flat Γ-Semihyperrings and Stable Elements

Motivated by the definition flat rings in the category of ring, we define
flat Γ-semihyperrings in the category Γ-semihyperrings. This concept
is a efficient tolls in the study of Γ-semihyperrings. In this section, we
introduce the concept of flat Γ-semihyperrings, absolutely extendable,
stable elements. Moreover, we prove that every flat Γ-semihyperring is
absolutely extendable and we obtain a characterization for stable ele-
ments.
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Definition 3.1. Let R be a Γ-semihyperring and X1, X2 be left Γ-
funs. Then by a morphism or Γ-morphism from a left Γ-fun X1 into a
left Γ-fun X2 we mean a map ψ : X1 −→ X2 with the following property:

ψ

θ
 n
i=1

(γ∗(xi), β∗(αi))

x1


= θ

 n
i=1

(γ∗(xi), β∗(αi))

ψ(x1),

for every θ
 n
i=1

(γ∗(xi), β∗(αi))

∈ F (R) and x1 ∈ X1.

A congruence relation on a left Γ-fun X is an equivalence relation on X
with the following property:

x1ρx2 =⇒ θ
 n
i=1

(γ∗(xi), β∗(αi))

x1ρ θ

 n
i=1

(γ∗(xi), β∗(αi))

x2,

for every x1, x2 ∈ X and θ
 n
i=1

(γ∗(xi), β∗(αi))

∈ F (R).

The quotient [X : ρ] is a left Γ-fun structure by the following definition:

θ
 n
i=1

(γ∗(xi), β∗(αi))

· ρ(x) = ρ


θ
 n
i=1

(γ∗(xi), β∗(αi))

x

.

We can generalize the notion of complex product for three Γ-funs. Sup-
pose that X1, X2 and X3 are (Γ1,Γ2)-, (Γ2,Γ3)-and (Γ3,Γ4)- funs, re-
spectively. A map ϕ : X1 × X2 × X3 −→ X is called a triple map or
(Γ1,Γ4)-map, if for x1 ∈ X1, x2 ∈ X2 and x3 ∈ X3

ϕ

x1θ

 n
i=1

(γ∗(yi), β∗(αi))

, x2, x3



= ϕ

x1, θ

 n
i=1

(γ∗(yi), β∗(αi))

x2, x3


,

where θ
 n
i=1

(γ∗(yi), β∗(αi))

∈ F (R2), and

ϕ

x1, x2θ

 m
j=1

(γ∗(xj), β∗(γj))

, x3



= ϕ

x1, x2, θ

 m
j=1

(γ∗(xj), β∗(γj))

x3


,
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where θ
 m
j=1

(γ∗(xj), β∗(γj))

∈ F (R3).

We say that P is a complex product of X1, X2 and X3 if there exists
a unique (Γ1,Γ4)- map ψ : X1 × X2 × X3 −→ P such that for every
(Γ1,Γ4)- fun X and (Γ1,Γ4)- map ϕ : P −→ D, ϕ ◦ ψ = ϕ. One can see
that C(C(X1, X2), X3) is a complex product of X1 ×X2 ×X3 and

C(C(X1, X2), X3) ∼= C(X1, C(X2, X3)).

Let R be a Γ-semihyperring. We say that R is left flat if for every left
Γ-fun X and monomorphism ψ : X1 −→ X2 of right Γ-funs, the induced
map ψC : C(X1, X) −→ C(X2, X) is injective. In the same way, we can
define a right flat Γ-semihyperring.
Suppose that R1 is a Γ-subsemihyperring of R. We say that R1 has the
extension property in R if for every right Γ-fun X1 and left Γ- fun X2 in
R1, the following map is injective:

ψ : CF (R1)(X1, X2) −→ CF (R1)(CF (R1)(X1, F (R)), X2)

C(x1, x2) −→ C

C

x1, θ

 n
i=1

(γ∗(ei), β∗(δi)

, x2


.

A Γ-semihyperring R is called absolutely extendable if it has extension
property in every Γ-semihyperringR


containing it as Γ-subsemihyperring.

Example 3.2. Let (R,+, ∗) be a Krasner hyperring, (Γ,+) be a sub-
semihypergroup of (R,+) and {Ag | g ∈ R} be a family of disjoint non-
empty sets. Then, S = ∪g∈RAg is a Γ-semihyperring with respect to the
following hyperoperations:

x⊕ y =


t∈g1+g2
At, xαy =



t=g1∗α∗g2
At,

where x ∈ Ag1 and y ∈ Ag2 . Also, R is a left Γ-fun by

F (S)×R −→ R

θ
 n

i=1

(γ∗(si), β∗(αi))

, x


−→ x,
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C

x1, θ

 n
i=1

(γ∗(ei), β∗(δi)

, x2


.

A Γ-semihyperring R is called absolutely extendable if it has extension
property in every Γ-semihyperringR


containing it as Γ-subsemihyperring.

Example 3.2. Let (R,+, ∗) be a Krasner hyperring, (Γ,+) be a sub-
semihypergroup of (R,+) and {Ag | g ∈ R} be a family of disjoint non-
empty sets. Then, S = ∪g∈RAg is a Γ-semihyperring with respect to the
following hyperoperations:

x⊕ y =


t∈g1+g2
At, xαy =



t=g1∗α∗g2
At,

where x ∈ Ag1 and y ∈ Ag2 . Also, R is a left Γ-fun by

F (S)×R −→ R

θ
 n

i=1

(γ∗(si), β∗(αi))

, x


−→ x,
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where x ∈ R, γ∗(si) ∈ [S : γ∗] and β∗(αi) ∈ [Γ : β∗]. Let X1 and X2

be left Γ-funs and ψ : X1 −→ X2 be a monomorphism. Then, ψC :
C(X1, R) −→ C(X2, R) is injective. Indeed,

ψC(ρ∗(x1, r1)) = ψC(ρ∗(x2, r)),

where x1 ∈ X and r ∈ R. By definition, ρ∗, we have ψ(x1) = ψ(x2)
and r1 = r2. Since ψ is one to one, we have x1 = x2. Therefore,
ρ∗(x1, r1) = ρ∗(x2, r2). Therefore, S is a flat and absolutely extendable
Γ-semihyperring.

Proposition 3.3. Every flat Γ-semihyperring is absolutely extendable.

Proof. Suppose that R is a flat Γ-semihyperring and R1 is a Γ-semihy-
perring containing R as a Γ-subsemihyperring. We show that the map

ψ : CF (R)(X1, X2) −→ CF (R)(CF (R)(X1, F (R1)), X2),

is injective. We note that the map

X1
∼= CF (R)(X1, F (R)) −→ CF (R)(X1, F (R1)),

is injective. Since R is flat, the following map is one-one. Hence,

CF (R)(X1, X2)
∼= CF (R)(CF (R)(X1, F (R)), X2) −→ CF (R)(CF (R)(X1, F (R1)), X2).

Therefore, R has the extension property in R1. This completes the proof.

Let R1 be a Γ-subsemihyperring of R such that θ
 n
i=1

(γ∗(xi)), β∗(αi)


∈ F (R). We say that θ
 n
i=1

(γ∗(xi), β∗(αi))

is stable element by R1 if for

every Γ

-semihyperring R


and homomorphism ψ1, ψ2 : F (R) −→ F (R


)

ψ1


θ
 n
j=1

(γ∗(yj), β∗(γj))


= ψ2


θ
 n
j=1

(γ∗(yj), β∗(γj))

,

for every θ
 n
j=1

(γ∗(yj), β∗(γj))

∈ F (R1) which implies that

ψ1


θ
 n
i=1

(γ∗(xi), β∗(αi))


= ψ1


θ
 n
i=1

(γ∗(xi), β∗(αi))

.
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The set of elements of F (R) stable by R1 denoted by StR(R1). It is easy
to see that F (R1) ⊆ StR(R1) .

Theorem 3.4. Let R1 be a Γ-subsemihyperring of R and

θ
 n

i=1

(γ∗(xi), β∗(αi))

∈ F (R).

Then,

CF (R1)


θ
 n
i=1

(γ∗(xi), β∗(αi))

, θ
 n
i=1

(γ∗(ei), β∗(δi))

,

= CF (R1)


θ
 n
i=1

(γ∗(ei), β∗(δi))

, θ
 n
i=1

(γ∗(xi), β∗(αj))

,

implies that θ
 n
i=1

(γ∗(xi), β∗(αi))


is stable by R1.

Proof. Suppose that

CF (R1)


θ
 n
i=1

(γ∗(xi), β∗(αi))

, θ
 n
i=1

(γ∗(ei), β∗(δi))

,

= CF (R1)


θ
 n
i=1

(γ∗(ei), β∗(δi))

, θ
 n
i=1

(γ∗(xi), β∗(αj))

.

Let we have Γ

-semihyperring R


and homomorphism ψ1, ψ2 : F (R) −→

F (R

) such that for every θ

 m
j=1

(γ∗(sj), β∗(εj))

∈ F (R1),

ψ1


θ
 m
j=1

(γ∗(sj), β∗(εj))


= ψ2


θ
 m
j=1

(γ∗(sj), β∗(εj))

.

We define

θ
 m
j=1

(γ∗(sj), β∗(εj))


· θ
 m
j=1

(γ∗(zj), β∗(γj))


= ψ1


θ
 n
i=1

(γ∗(xi), β∗(αi))

θ
 m
j=1

(γ∗(zj), β∗(γj))

.
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and

θ
 m
j=1

(γ∗(zj), β∗(γj))

· θ
 m
j=1

(γ∗(sj), β∗(j))


= θ
 m
j=1

(γ∗(zj), β∗(γj))

ψ2


θ
 m
j=1

(γ∗(sj), β∗(εj))

,

where θ
 m
j=1

(γ∗(sj), β∗(εj))

∈ F (R1) and θ

 m
j=1

(γ∗(zj), β∗(γj))

∈

F (R

). Hence, F (R


) is a (Γ1,Γ1)-funs in R1. We define ψ : F (R) ×

F (R) −→ F (R

) by the rule that

ψ

θ
 n
i=1

(γ∗(ti), β∗(δi))

, θ
 m
j=1

(γ∗(yj), β∗(γj))


= ψ1


θ
 n
i=1

(γ∗(ti), β∗(δi))

ψ2


θ
 m
j=1

(γ∗(yj), β∗(γj))

.

Then, ψ is a (Γ1,Γ1)-map in R1. Indeed,

ψ

θ

i,j
(γ∗(ti)β∗(δi)γ∗(yj), β∗(γj))


, θ
 m
r=1

(γ∗(zr)), β∗(ωr))


= ψ1


i,j
(γ∗(ti)β∗(δi)γ∗(yj), β∗(γj))


ψ2


θ
 m
r=1

(γ∗(zr), β∗(ωr))


= ψ1


θ
 n
i=1

(γ∗(ti), β∗(δi))

ψ1


θ
 n
i=1

(γ∗(yj), β∗(γj))


;

ψ2


θ
 m
r=1

(γ∗(zr), β∗(ωr))


= ψ1


θ
 n
i=1

(γ∗(ti), β∗(δi))

ψ2


r,j
γ∗(yj)β∗(γj)γ∗(zr), β∗(ωr))


.

Hence, there exists a map ψ : CF (R1)(F (R), F (R)) −→ F (R

) such that

ψ

CF (R1)


θ
 n
i=1

(γ∗(ti), β∗(δi))

, θ
 n
j=1

(γ∗(yj), β∗(γj))


= ψ

θ
 n
i=1

(γ∗(ti), β∗(δi))

, θ
 n
j=1

(γ∗(yj), β∗(γj))


= ψ1


θ
 n
i=1

(γ∗(ti), β∗(δi))

ψ2


θ
 n
j=1

(γ∗(yj), β∗(γj))

.
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Now, by assumption

ψ1


θ
 n
i=1

(γ∗(xi), β∗(αi))


= ψ1


θ
 m
i=1

(γ∗(xi), β∗(αi))

ψ2


θ
 n
i=1

(γ∗(ei), β∗(δi))


= ψ

CF (R1)


θ
 n
i=1

(γ∗(xi), β∗(αi))

, θ
 n
i=1

(γ∗(ei), β∗(δi))


= ψ

CF (R1)


θ
 n
i=1

(γ∗(ei), β∗(δi))

, θ
 n
i=1

(γ∗(xi), β∗(αi))


= ψ1


θ
 n
i=1

(γ∗(ei), β∗(δi))

ψ2


θ
 n
i=1

(γ∗(xi), β∗(αi))


= ψ2


θ
 n
i=1

(γ∗(xi), β∗(αi))

.

This completes the proof. 

Theorem 3.5. Let R1 be a Γ-subsemihyperring of R. Then,

θ
 m

j=1

(γ∗(xj), β∗(αj))

∈ StR(R1)

implies that

CF (R1)


θ
 m
j=1

(γ∗(xj), β∗(αj))

, θ
 n
i=1

(γ∗(ei), β∗(δi))


= CF (R1)


θ
 n
i=1

(γ∗(ei), β∗(δi))

θ
 m
j=1

(γ∗(xj), β∗(αj))

.

Proof.We know that CF (R1)(F (R), F (R)) is a (Γ,Γ)-fun in R as follows:

θ
 n
i=1

(γ∗(yi), β∗(γi))

CF (R1)


θ
 m
j=1

(γ∗(zj), β∗(αj))


·θ
 m


j=1

(γ∗(z

j), β

∗(α

j))


= CF (R1)


θ

i,j


γ∗(yi)β∗(γi)γ∗(zj), β∗(αj)


, θ
 m


j=1

(γ∗(z

j), β

∗(α

j))


;
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CF (R1)


θ
 m
j=1

(γ∗(zj), β∗(αj))

, θ
 m


j=1

(γ∗(z

j), β

∗(α

j))


·θ
 n
i=1

(γ∗(yi), β∗(γi))


= CF (R1)


θ
 m
j=1

(γ∗(zj), β∗(αj))

, θ

i,j


γ∗(z


j)
β∗(αj)γ∗(yi)), β∗(γi)


.

Let Ω be the set of all finite combinations

n
i=1

ni


CF (R1)


θ
 mi
j=1

γ∗(xij), β∗(αij)

, θ
 m


i

j=1
γ∗(x


ij), β

∗(α

ij)

.

One can see that Ω is a (Γ,Γ)-fun in R. We define a binary relation on
F (R)× Ω as follows:


θ
 n
t=1

(γ∗(yt), β∗(αt))

,

n
i=1

ni


CF (R1)


θ
 mi
j=1

γ∗(xij), β∗(αij)

, θ
 m


i

j=1
γ∗(x


ij), β

∗(α

ij)


·


θ
 n


r=1

(γ∗(y

r), β

∗(α

r))

,

m
i=1

si


CF (R1)


θ
 mi
j=1

γ∗(zij), β∗(γij)

, θ
 m


i

j=1
γ∗(z


ij), β

∗(γ

ij)


=

θ

t,r
(γ∗(yt)β∗(αt)γ∗(y


r), β

∗(α

r))

,

m
i=1

niCF (R1)


θ

j,t
(γ∗(yt)β∗(αt)γ∗(zij)), β∗(γij)


, θ
 m


i

j=1
γ∗(z


ij), β

∗(γ

ij)


+
n
i=1

siCF (R1)


θ

r,j
γ∗(xij) β∗(αij)γ∗(y


j), β

∗(α

r))

,

θ
 m


i

j=1
γ∗(x


ij), β

∗(α

ij)

.

It is easy to see that this binary relation is associative. In fact F (R) ×
Ω is a groupoid with identity


θ
 n
i=1

(γ∗(ei), β∗(δi))

, 0

. Suppose that
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CF (R1)
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
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j), β
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
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
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= CF (R1)
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, θ
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.
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, θ
 m


i

j=1
γ∗(x


ij), β

∗(α

ij)


·


θ
 n


r=1

(γ∗(y

r), β

∗(α

r))

,

m
i=1

si


CF (R1)


θ
 mi
j=1

γ∗(zij), β∗(γij)

, θ
 m


i

j=1
γ∗(z


ij), β

∗(γ

ij)


=

θ

t,r
(γ∗(yt)β∗(αt)γ∗(y


r), β

∗(α

r))

,

m
i=1

niCF (R1)


θ

j,t
(γ∗(yt)β∗(αt)γ∗(zij)), β∗(γij)


, θ
 m


i

j=1
γ∗(z


ij), β

∗(γ

ij)


+
n
i=1

siCF (R1)


θ

r,j
γ∗(xij) β∗(αij)γ∗(y


j), β

∗(α

r))

,

θ
 m


i

j=1
γ∗(x


ij), β

∗(α

ij)

.

It is easy to see that this binary relation is associative. In fact F (R) ×
Ω is a groupoid with identity


θ
 n
i=1

(γ∗(ei), β∗(δi))

, 0

. Suppose that
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CF (R1)


θ
 m
j=1

(γ∗(zj), β∗(αj))

, θ
 m


j=1

(γ∗(z

j), β

∗(α

j))


·θ
 n
i=1

(γ∗(yi), β∗(γi))


= CF (R1)


θ
 m
j=1

(γ∗(zj), β∗(αj))

, θ

i,j


γ∗(z


j)
β∗(αj)γ∗(yi)), β∗(γi)


.

Let Ω be the set of all finite combinations

n
i=1

ni


CF (R1)


θ
 mi
j=1

γ∗(xij), β∗(αij)

, θ
 m


i

j=1
γ∗(x


ij), β

∗(α

ij)

.

One can see that Ω is a (Γ,Γ)-fun in R. We define a binary relation on
F (R)× Ω as follows:


θ
 n
t=1

(γ∗(yt), β∗(αt))

,

n
i=1

ni


CF (R1)


θ
 mi
j=1

γ∗(xij), β∗(αij)

, θ
 m


i

j=1
γ∗(x


ij), β

∗(α

ij)


·


θ
 n


r=1

(γ∗(y

r), β

∗(α

r))

,

m
i=1

si


CF (R1)


θ
 mi
j=1

γ∗(zij), β∗(γij)

, θ
 m


i

j=1
γ∗(z


ij), β

∗(γ

ij)


=

θ

t,r
(γ∗(yt)β∗(αt)γ∗(y


r), β

∗(α

r))

,

m
i=1

niCF (R1)


θ

j,t
(γ∗(yt)β∗(αt)γ∗(zij)), β∗(γij)


, θ
 m


i

j=1
γ∗(z


ij), β

∗(γ

ij)


+
n
i=1

siCF (R1)


θ

r,j
γ∗(xij) β∗(αij)γ∗(y


j), β

∗(α

r))

,

θ
 m


i

j=1
γ∗(x


ij), β

∗(α

ij)

.

It is easy to see that this binary relation is associative. In fact F (R) ×
Ω is a groupoid with identity


θ
 n
i=1

(γ∗(ei), β∗(δi))

, 0

. Suppose that
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θ
 m
j=1

(γ∗(xj), β∗(αj))

∈ StR(R1). We consider two homomorphisms ψ1

and ψ2 from F (R) into F (R)×Ω and show that they coincide on R1. We
define

ψ1


θ
 n
i=1

(γ∗(yi), β∗(αi))


=

θ
 n
i=1

(γ∗(yi), β∗(αi))

, 0


ψ2


θ
 n
i=1

(γ∗(yi), β∗(αi))


=

θ
 n
i=1

(γ∗(yi), β∗(αi))

,

θ

i,j
γ∗(yi)β∗(αi)γ∗(ej), β∗(δj))


= θ


i,j
γ∗(ej)γ∗(δj)γ∗(yi), β∗(αi))


.

By a routine process, we see that ψ1 and ψ2 are homomorphisms. Let

θ
 n
i=1

(γ∗(zi), β∗(αi))

∈ F (R1). This implies that

CF (R1)


θ
 n
i=1

(γ∗(zi), β∗(αi))

, θ
 n
i=1

(γ∗(ei), β∗(δi)


= CF (R1)


θ
 n
i=1

(γ∗(ei), β∗(δi)

, θ
 n
i=1

(γ∗(zi), β∗(αi))


in CF (R1)(F (R), F (R)) and so

ψ1


θ
 n
i=1

(γ∗(zi), β∗(αi))


= ψ2


θ
 n
i=1

(γ∗(zi), β∗(αi))

.

Moreover, θ
 m
j=1

(γ∗(xj), β∗(αj))

∈ StR(R1) implies that

ψ1


θ
 m
j=1

(γ∗(xj), β∗(αj))


= ψ2


θ
 m
j=1

(γ∗(xj), β∗(αj))

,

and so

CF (R1)


θ
 m
j=1

(γ∗(xj), β∗(αj))

, θ
 n
i=1

(γ∗(ei), β∗(δi))

,

= CF (R1)


θ
 n
i=1

(γ∗(ei), β∗(δi))

θ
 m
j=1

(γ∗(xj), β∗(αj))

.
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This completes the proof. 

Proposition 3.6. Let R be a Γ-semihyperring, such that X1, X2 and X3

be Γ-funs and ϕ1 : X1 −→ X2, ϕ2 : X1 −→ X3 be Γ-morphisms. Then,
there exists a Γ-fun X and ψ1 : X2 −→ X, ψ2 : X3 −→ X such that
ψ1 and ψ2 are Γ-homomorphisms. Moreover, if ψ1(x2) = ψ2(x3), then
x2 ∈ ϕ(X1).

Proof. Suppose that ρ is the equivalence relation generated by all pairs
(x1, ϕ1(x1)), (x1, ϕ2(x1)), on X = X2 ∪X3, where x1 ∈ X1. The maps
ψ1 : X2 −→ X, ψ2 : X1 −→ X are given by ψ1(x2) = ρ(x2), ψ1(x2) =
ρ(x2). This complete the proof. 

Lemma 3.7. Let R1 be a Γ-subsemihyperring of R and R1 has extension
property in R, ϕ : X1 −→ X2 be a Γ-morphism of right Γ-fun in R1 and

C

x2, θ

 n
i=1

(γ∗(ei), β∗(δi))


= C

ϕ(x1), θ

 m
j=1

(γ∗(yj), β∗(αj))

,

in C(X2, F (R)). Then, x2 ∈ ϕ(X1).

Proof. Suppose that X is a Γ-fun in Proposition 3.6. Consider the fol-
lowing commutative diagram:

X1
ϕ−→ X2

↓ ↓
X2

ψ2−→ X

where ψ1 : X2 −→ X and ψ2 : X2 −→ X. Hence, the following diagram
is commutative:

C(X1, F (R))
C(ϕ,1)−→ C(X2, F (R))

↓ ↓
C(X2, F (R))

C(ψ2,1)−→ C(X,F (R))

By the extension property the map x2 → C

x2, θ

 n
i=1

(γ∗(ei), β∗(δi))




108 S. OSTADHADI DEHKORDI, M. HEIDARI AND B. DAVVAZ

from X2
∼= C(X2, F (R1)) to C(X2, F (R)) is one to one. We have

C

ψ1(x2), θ

 n
i=1

(γ∗(ei), β∗(δi))


= C(ψ1, 1)

C

x2, θ

 n
i=1

(γ∗(ei), β∗(δi))


= C(ψ1, 1)

C

ϕ(x1), θ

 m
j=1

(γ∗(yj), β∗(αj))


= C

(ψ2 ◦ ϕ)(x1), θ

 m
j=1

(γ∗(yj), β∗(αj))


= C(ψ2, 1)

C

ϕ(x1), θ

 m
j=1

(γ∗(yj), β∗(αj))


= C(ψ2, 1)

x2, θ

 n
i=1

(γ∗(ei), β∗(δi))


= C

ψ2(x2), θ

 n
j=1

(γ∗(ei), β∗(δi))

.

Hence, ψ1(x2) = ψ2(x2) and it follows by Proposition 3.6, x2 ∈ ϕ(X1). 

Theorem 3.8. Let R1 be a Γ-subsemihyperring of R and suppose that
R1 has the extension property in R. Let X1, X2 be right Γ-funs in R1

and ϕ : X1 −→ X2 be Γ-monomorphism in R1 and Z be a left Γ-fun in
R1 such that C(ϕ, 1) : C(X1, Z) −→ C(X2, Z) is also monomorphism. If

C

C

x2, θ

 n
i=1

(γ∗(ei), β∗(δi))

, z


= C

C

ϕ(x1), θ

 m
j=1

(γ∗(yj), β∗(γj))

, z


,

in C(C(X2, F (R)), Z). Then, there exists x

1 ∈ X1 and z1 ∈ Z such that

C

C

x2, θ

 n
i=1

(γ∗(ei), β∗(δi))

, z


= C

C

ϕ(x


1), θ

 n
i=1

(γ∗(ei), β∗(δi))

, z1


.
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Proof. Suppose that

C

C

x2, θ

 n
i=1

(γ∗(ei), β∗(δi))

, z


= C

C

ϕ(x1), θ

 m
j=1

(γ∗(yj), β∗(γj))

, z


,

in C(C(X2, F (R)), Z). By Proposition 3.6, we have the following com-
mutative diagram:

X1
ϕ−→ X2

↓ ↓
X2

ψ2−→ X

such that ψ1 : X2 −→ X and ψ2 : X2 −→ X. Hence, the following
diagram is commutative:

C(X1, Z)
C(ϕ,1)−→ C(X2, Z)

↓ ↓
C(X2, Z)

C(ψ2,1)−→ C(X,Z)

is commutative. We note that

C

C

ψ1(x2), θ

 n
i=1

(γ∗(ei), β∗(δi))

, z


= C(C(ψ1, 1), 1)

C

C

x2, θ

 n
i=1

(γ∗(ei), β∗(δi))

, z


= (C(ψ1, 1), 1)

C

C

ϕ(x1), θ

 m
j=1

(γ∗(yj), β∗(γj))

, z



= C

C

(ψ1 ◦ ϕ)(x1), θ

 m
j=1

(γ∗(yj), β∗(γj))

, z



= C

C

(ψ2 ◦ ϕ)(x1), θ

 m
j=1

(γ∗(yj), β∗(γj))

, z



...

= C

C

ψ2(x2), θ

 n
i=1

(γ∗(ei), β∗(γi))

, z

.

By the extension property we deduced that C(ψ1(x2), z) = C(ψ2(x2), z). Hence,
by Proposition 3.6, there exists C(x


1, z1) ∈ C(X1, Z) such that

C(x2, z) = C(ϕ, 1)(C(x

1, z1)) = C(ϕ(x


1), z1).
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Proof. Suppose that

C

C

x2, θ

 n
i=1

(γ∗(ei), β∗(δi))

, z


= C

C

ϕ(x1), θ

 m
j=1

(γ∗(yj), β∗(γj))

, z


,

in C(C(X2, F (R)), Z). By Proposition 3.6, we have the following com-
mutative diagram:

X1
ϕ−→ X2

↓ ↓
X2

ψ2−→ X

such that ψ1 : X2 −→ X and ψ2 : X2 −→ X. Hence, the following
diagram is commutative:

C(X1, Z)
C(ϕ,1)−→ C(X2, Z)

↓ ↓
C(X2, Z)

C(ψ2,1)−→ C(X,Z)

is commutative. We note that

C

C

ψ1(x2), θ

 n
i=1

(γ∗(ei), β∗(δi))

, z


= C(C(ψ1, 1), 1)

C

C

x2, θ

 n
i=1

(γ∗(ei), β∗(δi))

, z


= (C(ψ1, 1), 1)

C

C

ϕ(x1), θ

 m
j=1

(γ∗(yj), β∗(γj))

, z



= C

C

(ψ1 ◦ ϕ)(x1), θ

 m
j=1

(γ∗(yj), β∗(γj))

, z



= C

C

(ψ2 ◦ ϕ)(x1), θ

 m
j=1

(γ∗(yj), β∗(γj))

, z



...

= C

C

ψ2(x2), θ

 n
i=1

(γ∗(ei), β∗(γi))

, z

.

By the extension property we deduced that C(ψ1(x2), z) = C(ψ2(x2), z). Hence,
by Proposition 3.6, there exists C(x


1, z1) ∈ C(X1, Z) such that

C(x2, z) = C(ϕ, 1)(C(x

1, z1)) = C(ϕ(x


1), z1).
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Therefore,

C

C

x2, θ

 n
i=1

(γ∗(ei), β∗(δi))

, z


= C

C

ϕ(x


1), θ

 n
i=1

(γ∗(ei), β∗(δi))

, z1


.

This completes the proof. 
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