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Abstract. The concept of I'-semihyperrings is a generalization of
a semiring, a generalization of a I'-semiring, and a generalization of a
semihyperering. In this paper, we define the notions of complex product,
extension property and flat ['-semihyperrings and some of their proper-
ties are obtained. In addition, we prove that every flat I'-semihyperring
is absolutely extendable. Finally, we give some characterization of stable
elements.
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1. Introduction

The theory of hyperstructures was introduced by Marty [17] in 1934
during the 8" Congress of the Scandinavian Mathematicians. Algebraic
hyperstructures are a generalization of classical algebraic structures. In
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a classical algebraic structure the composition of two elements is an
element, while in an algebraic hyperstructure the composition of two
elements is a non-empty set.
Let H be a non-empty set. Then, the map o : H x H — P*(H) is
called a hyperoperation, where P*(H) is the family of non-empty subsets
of H. (H,o) is called a semihypergroup if for every z,y € H, we have
zxo(yoz)=(xoy)oz If forevery x € H, xo H = H = H ox, then
(H,o) is called a hypergroup. In the above definition, if A and B are two
non-empty subsets of H and x € H, then we define

AoB= |J aob, zoA={z}oA and Aoz = Ao {x}.

acAbeB

Since then, hundreds of papers and several books have been written on
this topic; see [2, 3, 6, 20]. A recent book on hyperstructures points
out on their applications in cryptography, codes, automata, probability,
geometry, lattices, binary relations, graphs and hypergraphs. Another
book [6] is devoted especially to the study of hyperring theory; sev-
eral kinds of hyperrings are introduced and analyzed, and the volume
ends with an outline of applications in chemistry and physics, analyzing
several special kinds of hyperstructures: e-hyperstructures and trans-
position hypergroups. A well known type of a hyperring is called the
Krasner hyperring [16] and then some researchers such as Davvaz et
al. [1, 5,4, 7,8, 14, 15, 18, 22|, Gontineac [13], Sen and Dasgupta [19],
Vougiouklis [20, 21] and others followed him.

Definition 1.1. A Krasner hyperring is an algebraic structure (R, +,-)
which satisfies the following azxioms:

(1) (R,+) is a canonical hypergroup, i.e.,

(i) for every z,y,z € R,z + (y+2) = (z +y) + 2,
(i) for every z,y € R, x +y =y + =z,

(iii) there exists 0 € R such that 0+ z = x.
) for every = € R there exists a unique element —z € R such
that 0 € z + (—x).

(iv

(v) z €z + y implies that y € —x + z and z € —y + z.
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(2) Relating to the multiplication, (R, ) is a semigroup having zero as
a bilaterally absorbing element,

(3) The multiplication is distributive with respect to the hyperopera-
tion +.

Recently, the concept of I'-hyperstructures such as I'-semihypergroups,
I'-hypergroups, I'-semihyperrings and I'-hypermodules study by many
resechers. The concept of I'-semihyperrings is a generalization of semi-
hyperrings, generalization of a I'-semirings and a generalization of semir-
ings. This concept consider by Dehkordi and Davvaz [9, 10, 11, 12]. They
introduced rough ideals, fundamental relations and complex product on
I’-semihyperrings. By the concept fundamental relation on I'-semihyperrings
they introduced covariant functor between the category I'-semihyperrings
and the category semirings.

We know that homological algebra is a efficient toll in the study of rings
and modules. This research work deals with certain algebraic systems
that is non-additive modification of classical homological structure. Mo-
tivated by the definition of flat rings in the category of rings, we define
flat I'-semihyperrings in the category of I'-semihyperrings. We introduce
the notions of complex systems on I'-semihypergroups, then we prove
some results in respect. Also, we introduce the notions of right(left)
flat T-semihyperring, extension property and absolutely extendable. We
prove that every flat I'-semihyperring is absolutely extendable. Finally,
we obtain a characterization of stable elements in I'-semihyperrings.

2. I'-Semihyperrings and Complex Product

In [10, 11], Dehkordi and Davvaz introduced the concept of I'-semihyper-
rings. Now, in this section, we shall explain more about I'-semihyperrings.
We investigate the concept of left (right) I'-funs and complex product.

Definition 2.1. Let R and T' be additive hypergroup and semihyper-
group, respectively. Then, R is called a I'-semihyperring if there exists
a hyperoperation R x I' x R — P*(R) (the image of (x,a,y) is denoted
by zay, for z,y € R and o, [ € T') satisfies the following conditions:
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(1) xia(x2 + x3) = v100w2 + T1OX3,
(2) (x1 + x2)axs = xi0m3 + T200T3,
(3) z1(a+ B)re = 10022 + 71 (T2,
(4) (r1aw2)Brs = 10((22P23),

for all x1,x9,23 € R and o € T.

A T-semihyperring R is called I'-hyperring if R is a canonical hyper-
group. It is obvious that every Krasner hyperring is a I'-hyperring where
ray denotes the product of the elements x,y € R.

Example 2.2. Let R = {a,b} and I' = {a, 3} be two sets with the
following operations and hyperoperation. Then, R is a ['-hyperring.

+‘a b a‘ab ﬁ‘a b +‘aﬁ
al|la R ala a ala a ala
b | R b bla a bla R 0la R

Example 2.3. Let S = {ay,az2,a3,a4}, I' = {«,3}. Then, S is a I'-
semihyperring with respect to the following operations and hyperopera-
tions:

D ‘ ay ag as aq
a ay as {as,as} {as,as}
a9 a9 a9 S S

az | {as,asa} S H{as,as} {as, a4}
as | {az,as} S Haz,as}  {asz,aa}

B ‘ ap az as aq
ay | ar ai ay ay
a2 | ar az {a3, a4} {a3, a4}
asz | aip a2 {ag, a4} {a37 a4}
ag | a1 az {az,as}  {as, a4}

+la B
ala O
B la p

for every z,y € S, xay = a;.
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Example 2.4. Let R be the Krasner hyperring, R,,x, be of all matrices
over R and I' be additive semihypergroup of all n x m matrices over
R. Then, R, x.m is a I'-hyperring where aab denoted the usual matrix
product of a, a, b where a,b € R;,x, and a € T,

Example 2.5. Let R be the set of real numbers. Then, R is a Z-
semihyperring with respect to the following hyperaddition and hyperop-
eration:
r1 D2 = {Z : [a;l] + [Z‘Q] <z < [w1] + [(EQ] + 1},
riawy = {z:a[n]lre] < z < afz1][z2] + 1},

for every z1,25 € R and & € Z, where Z = {a : o € Z}.

Let A and B be non-empty subsets of ['-semihyperring R. We define

n

ATX B = {:I:GR:wE > ajaub; s a; € Ab; GB,nGN}.
i=1

Let T" be a semihypergroup and n be a nonzero natural number. Then,

we say that

n
r0py < dx1,29,-+ - , 2, €1 {az,y}QHwi.
=1

Let 5 = Un>1 Br. Clearly, the relation [ is reflexive and symmetric. De-
note by * the transitive closure of 3.

Let R be a I'-semihyperring and I/ be a finite sum of elements of R. We
define a relation «v on R as follows:

(a,b) € y <= a,becu,

where v € U = Ur|JRTXR{J(Ug + RTX R). We denote the transitive
closure v by v* and this equivalence relation is called fundamental equiv-
alence relation on R. We denote the equivalence class of the element a
by v*(a). Hence, v*(a1) = v*(ag) if and only if there exist x1, xa, ... Tp4t1
with x1 = a1, Tp41 = ag and uy, ug, ... u, € U such that {z;, z;y1} C wuy,
for some i € {1,2,...n}.

Let R be a I'-semihyperring. We define a relation 6 on

{iﬁ1(7*(m)7ﬁ*(ai)) nmneNx € R a; € F},
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as follows:

for every v*(x) € [R : v*], where v* is a fundamental relation on R.
Let R be a I'-semihyperring and there exists an element

0 ( iﬁl(v*(ei), ﬂ*@))) ;

such that > v*(e;)5*(8;)v*(xz) = v*(z), for all v*(z) € [R: v*]. We say
i=1

that this element is an identity element(or just an identity)) of F(R)
and F(R) is a I'-semihyperring with identity.
Let F(R) = {0( H(fy*(a:i),ﬂ*(ai))) 2 € Ry el € N} and S be

i=1
a non-empty set. We say that S is a left I'-fun if there exists an action

F(R)xS — S
(6( 116 @57 @)ow) 0 T @ 5 (i) ).

=1

with the following property:

0(T10r ()3 @)y (7)) B () )

~o( Tl 5700) (o( .6 w050,
(0( 116 (e 5760 ) = 5.

n

where 0 TT(v*(w:), 6 (ax) ) Q(jﬁl(v*(w), 5*(35))) are elements of F(R)

i=1
and s € S. In the same way, we can define right I'-fun. Also, if R; and R»
are I'1- and I'9- semihyperrings respectively, we say that S is a (I'1, 's)-
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fun if it is a left I'y-fun and a right I's-fun, and

((g; 7 (@), 8°() ) )0 (Fna( SODN: m)))
o fle ) o fl o 76)),

=1

n

wheree(n( *(z:), ﬁ*(ai))) € F(Ry), 0

=1
It is clear that the cartesian product X x X2 of a left I'1- fun X; and a
right I's-fun X9 becomes (I'1, I'y)-fun if we make the obvious definition:

[T (" (), 6 (1)) € F(Ra).

/
u

o( 1107 (). (00) @r.m2) = (0 T10 (). 3* () ). 22).

n n

(er,22)0( 11 (@), 8 () ) = (w1, 220 ( 11 (" (@), 8()) ) ).

i=1 =1
Suppose that A is a (I'1,T'2)-fun and B is a (I'y, I'3)-fun. Hence, A x B
isa (I't,I's)-fun. A map ¢ : A x B — C is called a (I'1,I'3)-map if for

alla € A, b€ B and 0( I ('y*(a:i),ﬁ*(ai))> € F(Ry),
i=1
% at ’Y* xi?ﬁ* Qg 7b =@ aae ’7* mi7ﬂ* Q; b).
(a6( T ), 5 ()) ) 0) = (.6 ( 11" i), 8* () ) )
Example 2.6. Let R be a I'-semihyperring, S be the set of all one-one
and onto functions on F'(R). Then, S is a left I-fun.

Example 2.7. Let I be an ideal of I'-semihyperring R. Then,
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We say that (I'1,'s)-fun C is a complex product of A and B over F'(Rz)
if there is a (I'1,I's)-map ¢ : A x B — C such that for every (I'y,I's)-
fun D and every (I';,I's)-map § : A x B — D there exists a unique
(I't,I'3)-map B : C — D such that o = 3.

Suppose that p* is an equivalence relation on A x B generated by the
following relation:

p={((o0( T @), 5(00)).0), (@0 TL(* (@), 5" (@i)b)) )

i=1

o€ Ab€ B 10 (@), 5 (@) € F(Ry) .
We define C'(A, B) = [A x B : p*] and denote a typical element p*(a,b)
of C(A, B) by C(a,b). By definition of p we have that

¢ (ap( 110 @ 5(@))) b) = € (a.0( I (" (@) 5 (@0) 1)

n

=1

foralla € A and b € B.

Proposition 2.7. Let A be a (T'1,T'2)-fun and B be a (I'y,T's)-fun. Then,
C(A, B) is a complex product of A and B over F(Rz).

Theorem 2.8. The complex product of A and B over F(R3) is unique
up to isomorphism.

3. Flat I'-Semihyperrings and Stable Elements

Motivated by the definition flat rings in the category of ring, we define
flat I'-semihyperrings in the category I'-semihyperrings. This concept
is a efficient tolls in the study of I'-semihyperrings. In this section, we
introduce the concept of flat I'-semihyperrings, absolutely extendable,
stable elements. Moreover, we prove that every flat I'-semihyperring is
absolutely extendable and we obtain a characterization for stable ele-
ments.
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Definition 3.1. Let R be a I'-semihyperring and X1, Xo be left T'-
funs. Then by a morphism or I'-morphism from a left I'-fun X1 into a
left I'-fun Xo we mean a map ¢ : X1 — Xo with the following property:

v (0( L0 . 5@ )ar) = 0 1" (). 3" () ).

=1 =1

for every 0( ﬁ (’y*(:ri),ﬁ*(ai)» € F(R) and x1 € X;.

=1
A congruence relation on a left I'-fun X is an equivalence relation on X

with the following property:

n

wipry = 0( TT(v (w2), 57(00)) oo 0 TT (" (). 5 () ) 2z,

i=1 =1

for every x1,z9 € X and 0( ﬁ (’y*(xi),ﬁ*(ozi))) € F(R).

=1

The quotient [X : p] is a left I'-fun structure by the following definition:

n

o( 1107 @).57(0) - pla) = p(6( [1(7" (). ")) ) ).
=1 1=

We can generalize the notion of complex product for three I'-funs. Sup-

pose that X, X5 and X3 are (I'1,'2)-, (I'g,I'3)-and (I's, 'y)- funs, re-

spectively. A map ¢ : X7 X X9 x X3 — X is called a triple map or

(T'1,Ty)-map, if for z; € X1, x2 € X9 and z3 € X3

o(=16( [1((w). 7" (). 22.3)

1=

— (o1, (ﬁ( (i), B* (@) ). 33

=1

.

Where0<£[1( “(43), 5*(0))) € F(Ra), and

(p(:vl,:cgﬁ( (

Jj=

ol
m
- (p<$1,$2, ( H

J=1

(o wm») )
), (7)) ) )
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where 0( [T (+"(2;), 8 (7)) € F(Rs)

i=1

We say tﬁat P is a complex product of X7, X9 and X3 if there exists
a unique (I'1,Ty)- map ¢ : X; X X9 x X3 — P such that for every
(T'1,Ty)- fun X and (I'1,Ty)- map @ : P — D, o1 = ¢. One can see
that C'(C(X1, X2), X3) is a complex product of X; x Xy x X3 and

C(C(X1,X2),X3) =2 C(X1,C(X2, X3)).

Let R be a I'-semihyperring. We say that R is left flat if for every left
I'-fun X and monomorphism v : X1 — X5 of right I'-funs, the induced
map ¢ : C(X1,X) — C(Xo, X) is injective. In the same way, we can
define a right flat I'-semihyperring.

Suppose that R; is a I-subsemihyperring of R. We say that Ry has the
extension property in R if for every right I'-fun X; and left I'- fun X5 in
Ry, the following map is injective:

Y Cpry (X1, X2) — CF(Rl)(CF(Rlzl(XbF(R))a Xo)
Olz1,22) — o(c<x1,9( 11 (fy*(ei),ﬁ*(&i))),@).

i=1
A T-semihyperring R is called absolutely extendable if it has extension

property in every I'-semihyperring R containing it as I'-subsemihyperring.

Example 3.2. Let (R, +,*) be a Krasner hyperring, (I',+) be a sub-
semihypergroup of (R,+) and {4, | g € R} be a family of disjoint non-
empty sets. Then, S = UgecrAy is a I'-semihyperring with respect to the
following hyperoperations:

TDyY= U Ay, zay= U Ay,

tegi+g2 t=g1*axgs
where z € Ay, and y € Ay,. Also, R is a left I'-fun by
F(SY xR — R

o((T16s0. 8" (@)).a) — .

=1
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where x € R, v*(s;) € [S : v*] and *(ay) € [[' : B*]. Let X1 and Xo
be left I-funs and ¢ : X; — Xs be a monomorphism. Then, ¥¢ :
C(X1,R) — C(Xa, R) is injective. Indeed,

Yo (p*(z1,m1)) = Yo (p* (2, 1)),

where 1 € X and r € R. By definition, p*, we have (1) = ¥(x2)
and r; = 719. Since v is one to one, we have x1 = x5. Therefore,
p*(z1,71) = p*(x2,r2). Therefore, S is a flat and absolutely extendable
I'-semihyperring.

Proposition 3.3. Every flat I'-semihyperring is absolutely extendable.

Proof. Suppose that R is a flat ['-semihyperring and R; is a I'-semihy-
perring containing R as a I'-subsemihyperring. We show that the map

Y : Cper) (X1, X2) — Cpr)(Crry(X1, F(Ry)), X2),
is injective. We note that the map
X1 = Cpr)(X1, F(R)) — Cpr) (X1, F(R1)),

is injective. Since R is flat, the following map is one-one. Hence,

Cr(r)(X1, X2)

= Crr)(Crr) (X1, F(R)), X2) — Cpr)(Crr) (X1, F(R1)), X2).
Therefore, R has the extension property in R;. This completes the proof.
Let Ry be a I'-subsemihyperring of R such that 0( [Ty (x4)), ﬂ*(ai))

=1
n

€ F(R). We say that 9( TGO (i), ﬁ*(aﬁ)) is stable element by R; if for
i=1
every I'-semihyperring R* and homomorphism 11, : F(R) — F(R')

o (0( 110w 57 ))) = e (6( 107w 560 ) ),

j=1 7=1

s

for every 9( (v*(y5), ﬁ*(w))) € F(R;) which implies that

J=1

o (6( 110w, 5°(00) ) = (0

n
(2 1=

(7 (@), B () ).

1
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The set of elements of F'(R) stable by R; denoted by Str(R;). It is easy
to see that F(Ry) C Str(Ry1) 0O.

Theorem 3.4. Let Ry be a I'-subsemihyperring of R and
0TI @), 87(ai))) € F(R).
i=1
Then,

n

Crtay (0 110w, (@) 6 16 (€. 570,

1 =1
= Gy (0 11070 0))-0( 16 (@), () )

implies that 0( [Ty (), 5* (az))> is stable by Ry .
i=1

Proof. Suppose that

n

Crtay (2 107 @) 57(00)) £( 1107 (0. 5°(6) ).

=1
= Criy (0( 10 (e0.5°6)) 0 1107 (). (a,)) ).

Let we have I'-semihyperring R~ and homomorphism 1, ¢s : F (R) —
F(R') such that for every 9( I (7*(sj),ﬁ*(6j))) € F(Ry),

“(of

We define

((fLerep o)) o Her
:¢<9

(v
( (@, (@i) Jo( 116G, 5 0)).

jam

() (e)) = va(0( T s), 5 (e2)) )

1

J
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and

where 0( 1 (v*(5,),8%(;)) € F(R) and 6( [[(+(27), 5"(13))) €
.]:1 ]:1

F(R'). Hence, F(R') is a (I'1,I'1)-funs in R;. We define 1 : F(R) x

F(R) — F(R') by the rule that

n m

w(6( L. 5°6).0( I (w): 5°() )

=0 (0( L0 (8, 8°6))) )2 (6 ( 11 (7 (), 8 () )-

=1 7j=1
Then, v is a (I'1,I'1)-map in R;. Indeed,

— m

o (0( TIO @B (0077 (), 8°(3)) ) 0 ( T1 (" (z0)), 67 (w)) ) )

i, r=1

—

(0 L. 560)) Yo TT7 @) B () (20). B*()))-

=1 J

5
=
!
~

Hence, there exists a map 1 : Crr)(F(R), (R/) such that

n

B (Crenn (6( TLO" (), 570
= o (o( T (w56 ).

N—
N———

RS
/N
s

<.
Il

(), 509)))))
“(47),8° (%)) )
(7). 8" (1)) )

—~ =
s S
=)

.

T

= o1 (0( 11 (7 (t), 57(3))

i=1

~—r s
<

N
—— |l

(wn) —
/N
<.
==
—~
2
—
&
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Now, by assumption

v (0 10 @ 57(@)))

=0 (0 07,57 (00) ) (6 [T (7" (). 5°(60)
=0 (i (0 L6 @3 (@) 6 [10 (€0 5760
=0 ( oy (0 116 (e, 5°(60) . 0( T (7" (@) ")
=0 (0 1107 (e 50)) Joa(8( 1107 (). 5°(00)
=0 (0( 1107 @), ()

This completes the proof. [

Theorem 3.5. Let Ry be a I'-subsemihyperring of R. Then,
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Let Q be the set of all finite combinations

n

8 (o it i) o),

i=1

One can see that Q is a (I', I')-fun in R. We define a binary relation on
F(R) x Q as follows:

n

(0( ILOr* (w0, 8 ()

t=1
S oot o )
(6( T ). 5°(a0)
g:ls (CF(R )(G(Jﬁl'r*(zg),ﬁ*(vzg))) G(ﬁ’y (2ij) ﬁ*(%}))))
= (0(TT0r G5 (@ (), )
5 iy (0TI G @ ), ) 9(:illv (i) 8°0i)) )
+ 3 i (0TI @) i)y ), (@)
e(ﬁy (), 7" (0y)))

It is easy to see that this binary relation is associative. In fact F(R) x
n

Q is a groupoid with identity (9( H ('y*(ei),ﬁ*(éi))),O). Suppose that
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9( [T (v*(zy), ﬂ*(aj))) € Str(R1). We consider two homomorphisms
j=1
and 1y from F(R) into F(R) x  and show that they coincide on R;. We

define

o (6( 167 7°(00)) = (2( IO w0 5"} ). 0)
va(6( 1. 3°(00))) = (0 T (0. 3",
0T ()5 (i) (). 5°(650)) =O( T (es)7* (67" (). B*(a) )

.
<.

By a routine process, we see that 1 and 19 are homomorphisms. Let
n
9( T (v (), 5*(%))) € F(R;). This implies that

Crtr (0 110720500 0( T (7" (). 5°(60)

= Crn (0 1167 (e0.6°60)-0( 116 (0. 8°(00)
in Cp(g,)(F(R), F(R)) and so

v (6( 10 3%(00)) = v (6 [T (2.5 ()

ﬁ ('y*(xj),ﬁ*(aj))) € Str(Ry) implies that



ABSOLUTELY EXTENDABLE PROPERTY AND STABLE ... 107

This completes the proof. [

Proposition 3.6. Let R be a I'-semihyperring, such that X1, Xo and X3
be I-funs and o1 : X1 — Xa, @9 : X1 — X3 be I'-morphisms. Then,
there exists a I'-fun X and ¢y : Xo — X, ¥9 : X3 — X such that
Y1 and ¥y are I'-homomorphisms. Moreover, if 11(x2) = a(x3), then
To € gD(Xl).

Proof. Suppose that p is the equivalence relation generated by all pairs
(x1,01(21)), (x1,02(x1)), on X = X9 U X3, where x; € X;. The maps
Y1 Xo — X, Y9 1 X3 — X are given by ¢1(x2) = p(r2), 1(22) =
p(x2). This complete the proof. [

Lemma 3.7. Let Ry be a I'-subsemihyperring of R and Ry has extension

property in R, o : X1 — Xo be a I'-morphism of right I'-fun in R; and

C(w0( [ (e. 5760)) ) = (ot 0 1107w 5 () ),

in C(X9,F(R)). Then, z2 € p(X1).

Proof. Suppose that X is a I'-fun in Proposition 3.6. Consider the fol-
lowing commutative diagram:

X1 5 X
i !
X, 2 X

where ¥ : Xo — X and v : X9 — X. Hence, the following diagram
is commutative:

C(p,1)

C(X1,F(R)) -2 (C(Xq, F(R))
! !
C(X2, F(R)) %Y (X, F(R))

(7 (e2), 5°(5:))))

n
By the extension property the map zo — C (xg, 9(
i=1
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from X = C(Xy, F(R1)) to C(X2, F(R)) is one to one. We have

Hence, 91 (z2) = ¥2(x2) and it follows by Proposition 3.6, x5 € ¢(X1). O

Theorem 3.8. Let Ry be a I'-subsemihyperring of R and suppose that
Ry has the extension property in R. Let X1, Xo be right I'-funs in Ry
and ¢ : X1 — Xy be I'-monomorphism in Ry and Z be a left I'-fun in
Ry such that C(p,1) : C(X1,2) — C(X2, Z) is also monomorphism. If

e (€ (w2 1670 >>)) )
= c(e(etan0( 1676 760)) ),

in C(C(Xy, F(R)), Z). Then, there exists ; € X1 and 2 € Z such that

C(C(mﬁ(ﬂ(’Y*(ez) p(d )))) >

- c{c(oteh o fleenrion)) =)

1=
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Proof. Suppose that

(0 (22,0( 1T (v (). 5°6)) ).
(¢ (2. (gw (j) 5(6))) ) 2)
= c(C (e 10w 5°) ). #):
in C(C(X2,F(R)),Z). By Proposition 3.6, we have the following com-
mutative diagram:

X, 2 X,
! !
P2
X, — X

such that ¥ : Xo — X and 99 : X9 — X. Hence, the following
diagram is commutative:

cx,z) Y ox,,2)

! !

C(Xs,2) Y ox, 2)

is commutative. We note that
c((vitw), o 11, 56 ). 2)

=1

= c(Cw . (C(C (e 1107 (e).5°0)).2))
o( 1107w, 7)), )

(1

(" (). 8" (1)) ) #)

= (@1, ). 1)(0(0(e@),

= (o)), o

jemERjemb

Il
—

= 0(C (0 @) 0( I (). ")) ). %)

J

n

:chl‘?H ’Y*eiaﬂ*%‘ y % ).
(e (a0 (e, 57 (n) ) 2)
By the extension property we deduced that C(¢;(z2), 2) = C(12(x2), 2). Hence,
by Proposition 3.6, there exists C(z}, 21) € C(X1, Z) such that

C(x2,2) = C(p, 1)(C(2), 21)) = Clg(a1), 21).
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Therefore,

This completes the proof. [

1]

[10]
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