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Abstract. Iterative methods for optimization can be classified into
two categories: line search methods and trust region methods. In this
paper, we propose a modified regularized Newton method for minimiz-
ing nonconvex functions whose Hessian matrix may be singular without
line search. The proposed method is proved to converge globally if the
Gradient and Hessian of the objective function are Lipschitz continu-
ous. Moreover, we report numerical results that show that the proposed
algorithm is competitive with the existing methods.
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1. Introduction

Unconstrained optimization problems have a number of important appli-
cations in many fields, such as operations research, economic equilibrium
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models and engineering sciences. In these problems, the main goal is to
find the minimum of the objective function with no restrictions at all
on the values of variables. We consider the unconstrained optimization
problem

min f(z), (1)
r€eR™
where f : R® — R is a twice continuously differentiable and smooth
function. Gradient V f(x) and Hessian V2 f(z) are denoted by g(x) and
H(x), respectively. Throughout this paper, we assume that the solution
set of (1) is nonempty.

There are many useful algorithms to solve unconstrained optimization
problems such as: Newton method and modified Newton methods, quasi-
Newton methods, conjugate gradient methods, trust region methods,
etc. [3, 11, 14]. Among the methods mentioned above, the classical New-
ton method is very famous for its fast convergence property. There are
several modifications of the Newton method for unconstrained mini-
mization to achieve global and local convergence, see [3, 14] and the
references therein. In Newton method, the positive definiteness of the
Hessian matrix of the objective function is an essential condition to get
the local minimum and the fast local convergence. At each iteration, the
Newton method computes the trial step

dy = —H g, (2)

where g, = g(zx) and Hy = H(zy). To overcome the difficulty caused
by the possible singularity of Hessian, Sun in [19] proposed a regular-
ized Newton method, where the trial step is the solution of the linear
equations

(Hk + )\kf)dk = — 0k, (3)

where [ is the identity matrix and Mg is a positive parameter which
is updated from iteration to iteration. Fan in [6] proposed A\, = ||gx|°
with § € [1,2]. Also Fan in [7, 8] showed that the choice of \i, = || fx||
performs more stable and preferable. A new trust region method for
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nonlinear equations with the trust region radius converging to zero is
proposed in [5], and its convergence under some weak conditions is pro-
vided. Ueda and Yamashita [20] applied a regularized algorithm for non-
convex minimization problems. They gave a global complexity bound
and analyzed the super linear convergence of their method. The disad-
vantage of this method is that calculating the most negative eigenvalue
by decomposition methods or the method is computationally expen-
sive. Also, in [21], they proposed a regularized Newton method with-
out line search. Their method controls a regularized parameter instead
of a step size in order to guarantee the global convergence. Wang in
[22] proposed a modified regularized Newton method with correction for
unconstrained nonconvex optimization. Also, he proved that the mod-
ified regularized Newton method has a global convergence and a local
cubic convergence under some appropriate conditions. Shen et al. [17]
proposed a regularized Newton method for solving unconstrained non-
convex minimization problems without the nonsingularity assumption of
solutions. Under suitable conditions, the global convergence of the reg-
ularized Newton method and fast local convergence are established. Li
in [12] showed that the regularized Newton method has quadratic con-
vergence under the local error bound condition, where the trial step is
the solution of the linear equations

(Hy + Cllgx||1)dr = —gr,

where C' is a positive constant. Zhou in [23] proposed a two-step method
for convex minimization problems whose Hessian matrices may be sin-
gular. Then solves the linear equations

(Hy + Cligel Ddy. = —g(yr),
where y, = x1 + di, to obtain the approximate Newton step c/i\k

In this paper, we present an approximate of Hy and proposed a new
algorithm for solving unconstrained nonconvex optimization and use
e = el frell-

The organization of the paper is as follows: In Section 2, we present
a new modified algorithms for solving nonconvex optimization prob-
lems. In Section 3, we show that the new algorithm preserves the same
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global convergence as the existing modified Levenberg-Marquardt (LM)
algorithms under suitable conditions. The proposed method is tested on
several examples taken from the literature and the numerical experi-
ments are presented in Section 4. Finally, the conclusions are described
in the last section.

2. The Algorithm

In this section, we introduce a regularized Newton method based on
Zhou method [23]. We propose a new symmetric matrix instead of Hy,
and use a trust region technique to globalize the proposed method. De-
fine the actual reduction of f(z) at the k—th iteration as

Aredy, = f(x1) — f(zp + di + dp). (4)

We suggest that the regularized Newton step dj is the minimizer of the
problem:

1 1
i = 2d"Syd + gl d + =\ ||d||?
min g1 = 5d" Spd + g d+ 5 Aelldll, (5)

where Sj, is a symmetric matrix with Hessian matrix properties. Let
Sk = (fikgkg,z — Hy), where fr, = f(x) and fi # 0. Also define

Apa = |ldi]| = || = (Be + ]l fell 1)~ g fil, (6)

where By, = (gxgf — fixHy). Then similar to [18](Theorem 6.1.2), dj, is
also a solution of the trust region problem:

1
min idTBkd + gt d,
s.t. ||dkH < Ak71.
Similar to the famous result given by Powell in [15], we know that

| fregell
1B ™

1 :
#1(0) = @r1(dr) = 5|l frge] min {[|de]],
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Also, c?k is the minimizer of the problem:

1
_fd Bd Td+ = |ld|?
min ¢y, kd+ fyr)ge d + SAld], (8)

and similar to d, ch is the solution of the following trust region problem:

1
in —d” Byd La
min od” Brd + f(y)gx 4,
s.t. di| < Ag,2,

where

Ao = ldill = | = (Bi + il £l D)2 g £ (). 9)

Therefore, similar to (7)

J (Yk)gr
ora(0) = ora(@) > g minld, 8Ly o
Now we define prediction reduction as
Predy, = ¢4.1(0) — pr1(dk) + 21.2(0) — pra(dr), (11)

which satisfies

1 . Trgk 1 . T (Yk)gr

Pred > 3 fegellmin{ldull, L2+ 2 gul ming)dif, L2 0
2 | Bl 2 | B

The ratio of the actual reduction to the predicted reduction, ry = ]‘?,:,Zfl: ,

plays an important role to decide that whether or not accept the trial
step and how to adjust the regularized parameter. We set Ek = B+ Eg
where E, = 0 if By, is positive definite, otherwise Fj, is chosen to ensure
that By, is positive definite [14]. The regularized Newton algorithm for
unconstrained optimization problems is stated as follows:
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Algorithm 2.1 (Modified Regularized Newton Algorithm).
Input: 20 € R", u1 >m >0,0<py <p1 <p2<1ande>0.
Step2. If || frgi || = 0, then stop.

Solve

(Br + el fell D) die = — frgi -
Set

Yr = T + dp.
Solve

(Br + el frell D e = — f (yr) gt -
Set

Sk = dk—i-c/i\k.

Step3. Compute 13, = ﬁ:ig:. Set

T+ s, if i = po,
Tk+1 =

Tk, otherwise.
Step4. Update pg41 as

4/“{?7 if e < Pi1,
Pkl = Mo if 7 € [p1,pal,
max{ 4, m}, if i > po.

Set k:=k + 1 and go to Step 2.

Lemma 2.1. Let the sequence {xy} is generated by Algorithm 2.1, then
the sequence {f(xy)} is decreasing.

Proof. If r; < pg, according to Algorithm 2.1, xzxy1 = x; and so
f(zr41) = f(zk). So, we can let ry > pg > 0.

Then (12) implies that Predy > 0 and according to the definition of 7y,
we can say that Aredy > 0. Therefore by (4), we have f(z) — f(zr +
dk—i—gk) > 0. Then f(xg) > f(zk —|—dk—|—c?k) and so, the sequence { f(zx)}
is a decreasing sequence. [
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3. Global Convergence

In this section, we study the global convergence of Algorithm 2.1. We
first give the following assumptions.

Assumption 3.1. f(z), g(x) and H(x) are Lipschitz continuous, that
is, there exists positive constants L1, Lo and L3 such that

If(y) = f(x)|| < Lally — =, z,y€R", (13)

lg(y) — g(x)|| < Lafly — x|, =z,y€R", (14)
and

|H(y) — H(z)|| < L3lly — zl|, =,y €R" (15)

Without loss of generality, suppose L = max(Ly, Ly, L3).

Assumption 3.2. The mapping f is twice continuously differentiable
and the level set

L(zo) = {z € R"|f(z) < f(z0)},

is bounded.

Lemma 3.3. Suppose A is symmetric positive semidefinite. Then,
A+l = e, (16)
and
1A+ D)7 <97 (17)
hold for any ¢ > 0.

Proof. See [§]. O

Theorem 3.4. Let Assumptions 3.1 and 3.2 hold. Then Algorithm 2.1
terminates in finite iterations or satisfies

Jim {lg; fie]] = 0. (18)
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Proof. We use the contradiction to prove the theorem in a similar man-
ner with [9]. Suppose (18) is not true, then there exists ¢ > 0 and an
integer k such that

ot full =€, Vk >k (19)
Without loss of generality, suppose k=1 SetT = {k|zg11 # x}, Then
{1,2,...} =T U{k|rgps1 = x}.
Now we will analysis the following two cases:

Case (a): Suppose T is finite. Then there exists an integer k; such
that

Lhy = Thi+1 = Thy42 = - - - -
Therefore, according to Step 3 of Algorithm 2.1, we have
e < Do, Vk > k.
Therefore by Step 4 of Algorithm 2.1, we deduce
fE — 00, A — 00, (20)

where A\ = ug|| fil|- Since xp41 = x, Yk > ki, from relation (20) and
definition of dj in Algorithm 2.1 and Lemma 3.3 we get

ldill = | = (Bi + M)~ frgill < . lgwll — 0. (21)

From the definition of dj, in Algorithm 2.1 and by using (13), (20) and
assuming that g(z*) = 0 , we have

Idill = || = (Br + M) f(yr) gl |

< N(Br + M) F(yr) — Fi)gE | + 1 (Bi + MeD) ™2 frgl |
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< LY\ dkllIl(Br + D) git | + [ldi ]

c :
< (Sl = I+ 1) gl < Ky (22)
Ak

where C and K are positive constants. According to definition of (4)
and (11), we have

|Aredy, — Predy| =
’ (f(wk) — flop +di + Jk)) - <<Pk,1(0) — r,1(dk) + 0r,2(0) — Sok,Z((;l\k)) ’

. 1.7 o
< ‘f(yk +di) — flyr) — 5 Brdi — I (yr) gy dk’
1 e
"“f(?/k) — f(zg) — §d£Bkdk — fkg;{dk‘

= o([|di|I*) + o(lldx ). (23)
Moreover, from (12), (14), (19) and (21), we have
1 T 1
> Zrmi N
Predy, > 27’m1n{||dk||, L} > S7lldl, (24)

for sufficiently large k. According to (23) and (24), we get

Aredy, — Predk‘ _ o(lldkl®) + o(lld®)

TR — 1’ = ‘
‘ k Pred,, ]l

— 0, (25)

which implies that ry — 1. Therefore from Step 4 in Algorithm 2.1,
there exists constant & > 0 such that

,uk'<£7

which contradicts to the basic assumption (19).

Case b: Suppose T is an infinite set. From Assumption 3.2, (12) and
(19), we have
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00 > f(z1) — liminfp_o f(zg) = 352, f(@s) — f(@iy1)

= ZkeT flzr) = f(zpy1) = ZkeTp(JPredk

> po (B frgil min el LU L 1 47 () g mim { ], 15220l

> pog min {|ldil, 7 |-

keT

which relation (26) implies that

lim  dy = 0.
k—oo,keT

From (27) and py produced by Algorithm 2.1, we have

A — 00.

skl = lldx + dill < [|di|l + |ldi|l < elld]],

This equality together with (26) yields

> lsell =" Ny + di | < oo,

keT keT

which implies that

> llzrer — zill < oo

keT

Then
Tp — T.
From definition of dj, (22), (28) and (32), we get

dp — 0, c/l\k—>0.

VkelT.

)

(26)

(28)

(29)

(30)
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Since <§k + /\kI> dy, = —g,{fk then from (19), we have

Nelldill = g% fie + Brdill = llgi fil = I Bellldill = 7 — || Billlldill, (34)
therefore from (13), (14) and (15)

T

> [ a
s T
il

~ T
Bill = —— = lgel® + | felll Hil = — +
lldi|| lld||

C,  (35)

where C' is a positive constant. Which (35) according to (33) means

By the same analysis as (25) we know that 7, — 1. Hence, there exists a
positive constant 1 > m such that p; < 7 holds for all sufficiently large
k, which implies a contradiction to (19). Therefore initial assumption is
false and the proof is completed. [

4. Local Convergence

In this section, we study the local convergence properties of the proposed
algorithm. In a similar manner with [16], the local convergence theory
requires the following assumptions. We assume that the solution set of
(1) is nonempty and denote it by X*. Also {zx} converges to z* € X*
and lies in some neighborhood of x*.

Assumption 4.1.

(I) There exists a solution z* € X* of (1).

(I1) g(z) is Lipschitz continuous on N (z*,b) = {z € R"| || —z*| < b},
i.e., there exists a positive constant L such that

l9(y) — g(@)| < Llly — =||, Va,y € N(z*,b), (37)
where 0 < b < 1.

Assumption 4.2. (A) ||g(z)|| provides a local error bound on some
neighbourhood of x*, i.e., there exist two positive constants ¢ and b such
that

lg(@)l| = ¢ dist(z, X¥), Va € N(z",b), (38)
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(B) The Hessian H (z) is Lipschitz continuous on N (z*,b), that is, there
exists a constant L such that

|H(y) — H(z)|| < Llly —z||, Va,y € N(z",b). (39)

Lemma 4.3. According to Assumptions 3.2, 4.1 (II), 4.2 (B) and defi-
nition of S, there exist constants K7 and C such that

15(y) = S(@)| < Cilly — =l + Killy — ||, Va,y € N(z*,b). (40)

Proof. Under Assumptions 4.1 (II) and 4.2 (B), and since {f(zx)} is a
monotone decreasing sequence and has a bound from below, we have

1S(y) — S(2)| < Mlg()g()" = g(@)g(=) || + | H(y) — H(y)| <
M (lgw)gw)" — gw)g@) ™ + lg()g@)” — g(x)g(x)"|) + Llly — || <
M (lg) g™ — g@) ") + lgly) — g(@)|llg(x)"]|) + Llly — || <

MLy 2] (lg@)l + o)) + Ly — 2] <
MLy =) (o) - o)l + 2lg(@) — gz + Llly - 2] <

Cully — 2|* + Kily — =|l,
where C1 = ML? and K1 = L(1 +2MLb). O

In the following, we denote Tj the vector in the solution set X* that
satisfies

dz’st(xk,X*) = ”J,’k —ka

To obtain faster convergence of the modified regularized Newton method,
we need to estimate Hc/Z\kH more accurately. We will use the SV D tech-
nique to derive the local convergence rate of algorithms 2.1. Since Ek(x*)
is a symmetric matrix, there is an orthogonal matrix (U;, Us) such that

~ e o [ ZF 0 v
Bk($ ): (U17U2) ( 01 0 ) ( Vl*T ) )
2
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where X is a diagonal matrix. Also, we can suppose that Ek(:n) has the
following decomposition,

~ Zl 0 V]_T T T
Bue) = .00 (5 g, ) (k) =i vy,

where rank(X1) = rank(X7) and X5 converges to zero as x — x*. We
first prove the linear convergence of Algorithm 2.1, which implies that
|zx — 2% = dist(zg, X7).

Lemma 4.4. Under Assumption 4.1, if xp, yx € N(x*, %), we have

(a)HEZ\kH < C1 dZSt(xkaX*)7
Okl < co dist(xg, X*),
()]sl < e3 dist(xp, X*),

for sufficiently large k, where c1,co and c3 are positive constants.
Proof. The proof is similar to Lemma 3.2 in [10]. O

Lemma 4.5. Under Assumption 4.1, if xp,yr € N(m*,%), then there
exrists a positive constant § > m such that for all sufficiently large k,

e <6, (41)
holds.
Proof. Proof in [10]. O
Lemma 4.6. Let Assumptions 4.1 and 4.2 hold. Then we have

dist(xpi1, X*) = O(dist(xp, X)). (42)
Proof. According to Assumptions 4.1, 4.2 and Lemma 4.3, we have
c | Trv1 — Trpr |l < lg(@rg1)ll = llg(ye + di) ||
< Nlg (s + di) — glyr) — SCur)dil| + llg(yr) + S(ye)di|

< Ll|dpll? + llg (k) + Skdpll + 1S () di — Syl
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< LIl + llgCun) + Skdi | + (Culldgl* + Kol ) i

< Lldl? + (Collapll + Melldell) + (Calldll® + Kl ) el
Therfore from Lemma 4.4 and A\ = pgl| fx||, we get
¢ 1Th1 = wprall < llglanen) || < Ealldill + kalldi|® + kslldg],

where ki, ko and ks are positive constants. [

Theorem 4.7. Let Assumption 4.2 hold. Then we have

Iskeall = Olskl),  llersr — 2"l = O(llzx — =7|))- (43)

Proof. Proof in [23]. O

Lemma 4.8. Under Assumption 4.1, if zy,yr € N(z*, g), then we have

(@) lg(ywll < Ok — i),
(b) 0205 9(ye) | < O([k — = 11%),

for all sufficiently large k.
Proof. We can find the proofs of (a) and (b) in [23]. O

Theorem 4.9. Let the sequence {xy} is generated by Algorithm 2.1,
under the conditions of Assumption 4.1 the sequence {xp} converges
quadratically to a solution of (1).

Proof. Theorem is proved in a similar manner with [9] and [23]. O
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5. Numerical Results

In this section, we report some results on the following numerical ex-
periments for the proposed algorithm (Algorithm 2.1). Also compare
the effectiveness of the proposed method with the extended regularized
Newton method (E-RN method) [20], regularized Newton method with
correction [22] and Modified cholesky method [14]. In Algorithm 2.1 and
RN method, suppose pg = 0.0001, p; = 0.25,p2 = 0.75, 41 = 107°,m =
1078, also in E-RN method ¢; = 2, ¢co = 107°, & = 10~%. The stopping
criterion is ||g(xx)| < 107°. Ny represents the number of evaluations of
the objective function, IV, represents the number of evaluations of its
gradient and “Dim” shows the dimension of the problem. All of the
algorithms are implemented in Matlab 12.0 and runs are made on 2.3
GHz PC with 8 GB memory. The test functions commonly used un-
constrained test problems with standard starting points (see [1, 2, 13])
and summary of which is given in Table 1.

Table 1: Test Problems

No. Name No. Name

1 Example 1 12 TRIDIA

2 Example 2 13 Diagonal Double Bounded Arrow Up
3 Extended Beale 14 NONDIA

4 Extended White-Holst 15 FLETCHCR

5  Brown badly scaled 16  DENSCHNB

6  Extended Powell Singular 17 DENSCHNF

7 Freudenstein and Roth 18 DIXON3DQ

8  Extended Tridiagonal I 19  BIGGSBI

9  Extended DENSCHNB 20  DIAG-AUPI

10 Extended Himmelblau 21 Griewank

11 NONDQUAR 22 Broyden Tridiagonal
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Example 1. [17] f(z) = 123 + 12323, 20 = (-1.2,1), f(z*) = 0.

Table 2: Numerical results

NO./Dim  Proposed Method RN method [22] E-RN method [20] Modified Cholesky [14]
Ny /Ng Ny/Ng Ny /Ng Ny /Ng
CPU time(s) CPU time(s) CPU time(s) CPU time(s)
lfx = £*1I lfx = £*1I lfs = £*1I Ilfk = 1l
1/2 14/8 26/27 13/14 25/25
0.867 1.615 1.475 0.705
1.26 E-13 0 1.92 E-12 3.02 E-44
2/300 12/7 28/29 13/13 20/19
6.752 17.172 13.984 24.077
1.80 E-13 0 1.74 E-12 6.47 E-28
3/10 10/6 28/29 23/23 44/9
0.366 2.460 3.268 3.010
6.55 E-17 1.04 E-11 7.78 E-12 1.29 E-13
3/300 10/6 FAIL 25/25 45/10
9.756 - 47.476 27.188
1.05 E-7 - 1.47 E-11 3.99 E-24
4/200 42/22 FAIL 51/50 11/10
12.063 - 31.046 5.277
3.12 E-21 - 8.15 E-11 2.47 E-13
5/2 22/12 40/41 22/23 FAIL
0.382 2.709 0.704 -
7.93 E-27 0 0 -
6/4 12/7 22/23 15/16 17/18
0.226 1.512 0.580 1.915
5.97 E-17 2.48 E-9 4.40 E-9 1.71 E-10
6/96 22/12 24/25 16/17 18/19
3.013 4.294 5.380 5.626
3.51 E-17 6.22 E-9 2.08 E-8 8.10 E-10
7/10 122/62 10/11 6/7 6/7
4.134 0.886 0.916 0.913
1.04 E-28 1.96 E+2 1.96 E+2 1.96 E+2
8/10 12/7 18/19 12/13 14/15
0.286 1.364 1.480 1.712
1.73 E-10 7.13 E-9 1.76 E-8 6.88 E-10
8/300 12/6 20/21 13/14 15/16
6.431 11.388 14.715 15.150
5.53 E-9 2.22 E-8 1.05 E-7 4.08 E-9
9/300 14/8 34/35 35/26 30/4
7.785 19.262 27.870 7.500
1.42 E-20 1.48 E-29 6.59 E-16 0
10/300 12/7 54/55 136,134 6/7
6.648 32.854 159.513 6.805
6.84 E-27 8.29 E-16 8.59 E-13 6.20 E-16
11/10 12/7 18/19 13/14 15/16
0.307 1.279 1.699 1.867

4.18 E-20 1.14 E-8 5.58 E-9 2.18 E-10
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()
1 Y

= iy (5 (w3ima — 52)2 4 5 (w32 — B2571)%a3,),

1,...,-1.2,1).

Table 3: Numerical results

NO./Dim  Proposed Method RN method [22] E-RN method [20] Modified Cholesky [14]
Ny /Ng Ny /Ng Ny /Ng Ny /Ng
CPU time(s) CPU time(s) CPU time(s) CPU time(s)
lfe — £=1I Ilfe — £l Il fi — £l lfe — £=1I
12/10 4/3 2/3 2/3 1/2
0.265 0.145 0.258 0.186
1.71 E-28 5.62 E-12 4.83 E-21 1.50 E-29
13/10 14/8 FAIL 10/11 28/12
0.346 - 1.285 2.123
6.58 E-21 - 7.25 E-20 4.93 E-15
13/100 38/20 FAIL 134/132 11/10
6.647 - 44.304 3.226
9.05 E-17 - 5.74 E-13 8.90 E-20
14/10 16/9 68/69 67/66 15/16
1.058 4.047 8.083 4.956
1.49 E-14 1.24 E-28 9.90 E-1 9.90 E-1
14/300 12/7 8/9 7/8 7/8
6.476 4.566 7.873 7.956
1.90 E-17 7.41 E-24 1.38 E-22 5.61 E-24
15/10 14/8 FAIL 36/36 17/7
0.382 - 3.380 1.397
2.00 E-27 - 1.31 E-14 1.72 E-23
16/10 36/19 34/35 19/20 141/34
2.353 2.885 2.244 10.194
1.08 E-12 2.27 E-12 3.09 E-17 1.15 E-14
17/10 10/6 8/9 6/7 6/7
0.356 0.923 0.983 0.976
1.09 E-21 6.72 E-19 3.26 E-21 2.26 E-21
18/10 4/3 2/3 2/3 1/2
0.259 0.146 0.256 0.221
5.48 E-29 4.23 E-14 1.69 E-22 1.97 E-31
19/10 4/3 2/3 2/3 1/2
0.262 0.146 0.270 0.192
1.51 E-17 6.61 E-16 6.61 E-25 4.93 E-32
20/200 14/8 14/15 9/10 10/11
5.314 5.490 6.708 7.258
2.31 E-19 1.46 E-26 4.25 E-15 7.44 E-26
21/10 8/5 FAIL 17/17 28/7
1.194 - 4.408 3.091
2.65 E-14 - 1.55 E-10 0
21/50 8/5 FAIL 31/30 72/10
67.560 - 501.544 189.557
5.06 E-14 - 1.54 E-10 0
22/300 8/5 8/9 6/7 6/7
8.210 9.116 12.347 12.362
1.15 E-12 5.49 E-15 3.34 E-17 3.34 E-17
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The results on above problems are listed in Tables 2 and 3. The pro-
posed method has considerable advantage in number of evaluations, the
error and computational time. Recently, for comparison of iterative al-
gorithms, Dolan and More’ [4] proposed a new technique comparing
the considered algorithms with statistical process by demonstration of
performance profiles. In this process it is known that a plot of the perfor-
mance profile reveals all of the major performance characteristics, which
is a common tool to graphically compare effectiveness and robustness of
the algorithms. In this technique, one can choose a performance index as
measure of comparison among considered algorithms and can illustrate
the results with performance profile. Figures 1 and 2 show the com-
parisons of proposed method (Algorithm 2.1), RN method [22], E-RN
method [20] and Modified Cholesky method [14] relative to computing
time, the number of evaluations of the objective function (Ny) and the
number of evaluations of its gradient (IV,), respectively.

6. Conclusions

In this paper, we propose a new modified Newton method for uncon-
strained minimization problems and analyze its global and local con-
vergence. Using this algorithm, convex and nonconvex problems can be
solved. We also test our algorithm on some unconstrained problems. The
numerical results and comparison with some algorithms confirm the ef-
ficiency and robustness of our algorithm. Finally, we give detailed com-
putational experiments and numerical comparisons to show that our
approach is potentially efficient.

—— Proposed method
—— RN method
- = E-RN method
Modified Cholesky method
1 2 3 4 5 6 7 8 9 10
r

Figure 1. Performance profile for CPU time
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02k Proposed method 02k
——— RN method —— RN method

Proposed method

== E-RN method == E-RN method
) ) ) ~ — — Modified Cholesky method - . . . — — — Modified Cholesky method
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Figure 2. (a) Performance profile for Ny
(b)Performance profile for Ny
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