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gamma rings and some new characterizations were developed in gamma
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1. Introduction

The notation of a gamma ring was first introduced by Nobusawa [10] as a
generalization of a classical ring and afterward Barnes [2] improved the concepts
of Nobusawa’s Γ-ring and developed the more general Γ-ring in which all clas-
sical rings were contained in this Γ-ring. We know, quotient fields are applied
for making valuation rings and Dedekind domains and Dedekind domains are
used in numbers theory [9].

In this paper the researchers constructed fraction Γ-ring and discussed their
characteristics and relations by using local Γ-rings.
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Let R and Γ be two additive abelian groups and there exists a mapping
(x, γ, y) −→ xγy of R × Γ ×R −→ R, which satisfies the conditions:

(i) (x+ y)γz = xγz + yγz, x(γ1 + γ2)y = xγ1y + xγ2y,

xγ(y + z) = xγy + xγz,

(ii) (xγ1y)γ2z = xγ1(yγ2z),

for all x, y, z ∈ R and γ, γ1, γ2 ∈ Γ. Then R is called a gamma ring.

If there exists 1R ∈ R and γ0 ∈ Γ such that for all r ∈ R,

1Rγ0r = rγ01R = r, then 1 = 1R is called identity element [13].

Let R be a Γ-ring with 1. An element a ∈ R is called invertible if there exists
b ∈ R such that aγ0b = bγ0a = 1, also b is unique and called the multiplicative
inverse of a and is denoted by a−1.

An element a ∈ R is said to be zero -divisor if there exists b = 0 such that
aγ0b = bγ0a = 0.

Let R be Γ-ring. If for all a, b ∈ R and for all γ ∈ Γ, aγb = bγa, then R is called
commutative Γ-ring.
A subset I of Γ-ring R is said left(or right) gamma ideal if I is an additive
subgroup of R and RΓI ⊆ I (orIΓR ⊆ I) [11].
Let R be a Γ-ring. The ideal generated by a ∈ R is the intersection of all ideals
contain a and
a = {na+ xαa+ aβy +

k
i=1 uiγiaδivi | n, k ∈ Z, a, x, y, ui, vi ∈ R,

α, β, γi, δi ∈ Γ}.
A Γ -ring homomorphism [6] is a mapping f of Γ-ring R to Γ-ring R


such

that:
(i) f(x + y) = f(x) + f(y) , (ii) f(xγy) = f(x)γf(y), for all x, y ∈ R and
γ ∈ Γ.
A multiplicatively closed subset of Γ-ring R is a subset S of R such that 1 ∈ S
and s1Γs2 ⊆ S, for all s1, s2 ∈ S.

Let R be a Γ-ring with 1 and ∗ : R × Γ × R −→ R be a map on R such that
(R − {0}, ∗) be a group. Then R is called Γ-field.

We consider the following assumptions

(∗) xαyβz = xβyαz, for all x, y, z ∈ R and α, β ∈ Γ,
(∗∗) (s1αs2)γ0(s1αs2)γ0(xβy) + (s1βs2)γ0(s1βs2)γ0(xαy) = 0,

for all x, y, z ∈ R, s1, s2 ∈ S, α, β ∈ Γ [4].
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2. Fractions of Gamma Rings

Throughout this section , the word gamma ring Rmeans a commutative gamma
ring with 1 and without zero-divisor.

Proposition 2.1. If a and b are invertible in R , so is aγ0b and
(aγ0b)−1 = b−1γ0a

−1.

Proof.

(aγ0b)γ0(b−1γ0a−1) = aγ0(bγ0b−1)γ0a−1

= aγ01γ0a−1

= (aγ01)γ0a−1

= aγ0a
−1

= 1,

and similarly (b−1γ0a−1)γ0(aγ0b) = 1. 

Proposition 2.2. Let R be a Γ-ring and S = R − {0}. We define relation ∼
on R× S as follows :
(a, s) ∼ (b, t) ⇐⇒ aγ0t − bγ0s = 0 , for a, b ∈ R and s, t ∈ S. Then ∼ is an
equivalence relation.

Proof. We show that the relation ∼ is reflexive, symmetric and transitive.
Since for all a ∈ R and s ∈ S, aγ0s− aγ0s = 0 , so (a, s) ∼ (a, s).
If (a, s) ∼ (b, t), then aγ0t−bγ0s = 0, and so bγ0s−aγ0t = 0. Thus (b, t) ∼ (a, s).
If (a, s) ∼ (b, t) and (b, t) ∼ (c, u) , then we have

aγ0t− bγ0s = 0, (1)
bγ0u− cγ0t = 0. (2)

On the other hand, a multiplication by γ0u of (1) and γ0s of (2) gives

aγ0tγ0u− bγ0sγ0u = 0, (3)
bγ0uγ0s− cγ0tγ0s = 0. (4)

Sum of (3) and (4), we obtain

aγ0tγ0u− cγ0tγ0s = 0. (5)

By using commutativity, we have

(aγ0u− cγ0s)γ0t = 0. (6)
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We have t = 0 and R is without zero-divisor, which gives aγ0u− cγ0s = 0 and
thus (a, s) ∼ (c, u).
Hence, the proof is complete. 

Theorem 2.3. Let [a, s] denote the equivalence class of (a, s), and S−1R denote
the set of equivalence classes. If R satisfies the conditions (∗) and (∗∗), we define
addition and multiplication of these fractions as follows:






S−1R× Γ× S−1R −→ S−1R

[r, s] + [r

, s

] = [rγ0s


+ sγ0r


, sγ0s


]

[r, s]γ[r

, s

] = [rγr


, sγs


],

then
(i) these definitions are well-defined.
(ii) S−1R is a Γ-ring with identity element [1, 1].

Proof. (i): If [r1, s1] = [r


1, s


1] and [r2, s2] = [r


2, s


2] , then we have

r1γ0s


1 − s1γ0r


1 = 0, (7)

r2γ0s


2 − s2γ0r


2 = 0. (8)

A multiplication by s2γ0s


2 of (7) and s1γ0s


1 of ( 8 ) gives

r1γ0s


1γ0s2γ0s


2 − s1γ0r


1γ0s2γ0s


2 = 0, (9)

r2γ0s


2γ0s1γ0s


1 − s2γ0r


2γ0s1γ0s


1 = 0. (10)

Sum of (9) and (10), we obtain

r1γ0s


1γ0s2γ0s


2 − s1γ0r


1γ0s2γ0s


2 + r2γ0s


2γ0s1γ0s


1 − s2γ0r


2γ0s1γ0s


1 = 0.

Since R is commutative Γ-ring ,we have

r1γ0s2γ0s


1γ0s


2 + r2γ0s1γ0s


1γ0s


2 − r


1γ0s


2γ0s1γ0s2 − s


1γ0r


2γ0s1γ0s2 = 0,

therefore

(r1γ0s2 + r2γ0s1)γ0s


1γ0s


2 − (r


1γ0s


2 + s


1γ0r


2)γ0s1γ0s2 = 0, (11)

[r1γ0s2 + r2γ0s1, s1γ0s2] = [r


1γ0s


2 + s


1γ0r


2, s


1γ0s


2], (12)

[r1, s1] + [r2, s2] = [r


1, s


1] + [r


2, s


2]. (13)
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Thus addition is well-defined.
Now, let [r1, s1] = [r2, s2], [r



1, s


1] = [r


2, s


2] and γ = γ1 = γ2 , we have

r1γ0s2 − s1γ0r2 = 0, (14)

r


1γ0s


2 − s


1γ0r


2 = 0. (15)

On the other hand,a multiplication by r


1γs


2 of (14) and r2γs1 of (15) gives

r1γ0s2γr


1γs


2 − r


1γs


2γs1γ0r2 = 0, (16)

r


1γ0s


2γr2γs1 − s


1γ0r


2γr2γs1 = 0. (17)

By using the sum of (16) and (17) and applying the condition (∗), we obtain

r1γr


1γ0s2γs


2 − s1γs


1γ0r2γr


2 = 0, (18)

or
[r1γr



1, s1γs


1] = [r2γr


2, s2γs


2], (19)

therefore [r1, s1]γ[r


1, s


1] = [r2, s2]γ[r


2, s


2].
Thus the multiplication is well-defined.

Proof (ii). Since S is a multiplicatively closed subset of R and R is Γ− ring,
therefore rγr

 ∈ R and sγs
 ∈ S , for all r, r

 ∈ R, s, s ∈ S and γ ∈ Γ . Thus
[r, s]γ[r


, s

] = [rγr


, sγs


] ∈ S−1R.

For [r1, s1], [r2, s2], [r3, s3] ∈ S−1R and α ∈ Γ, we have

([r1, s1] + [r2, s2])α[r3, s3] = [r1, s1]α[r3, s3] + [r2, s2]α[r3, s3],

because

([r1, s1] + [r2, s2])α[r3, s3] = [r1γ0s2 + s1γ0r2, s1γ0s2]α[r3, s3]
= [r1γ0s2αr3 + s1γ0r2αr3, s1γ0s2αs3].

Also

[r1, s1]α[r3, s3] + [r2, s2]α[r3, s3] = [r1αr3, s1αs3] + [r2αr3, s2αs3]
= [r1αr3γ0s2αs3 + s1αs3γ0r2αr3, s1αs3γ0s2αs3].

It is easy to see that

[r1γ0s2αr3 + s1γ0r2αr3,s1γ0s2αs3] = [r1αr3γ0s2αs3 + s1αs3γ0r2αr3, s1αs3γ0s2αs3]
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Now, we show that [r1, s1](α+ β)[r2, s2] = [r1, s1]α[r2, s2] + [r1, s1]β[r2, s2], we
have

[r1, s1](α+ β)[r2, s2] = [r1(α+ β)r2, s1(α+ β)s2]
= [r1αr2 + r1βr2, s1αs2 + s1βs2],

[r1, s1]α[r2, s2] + [r1, s1]β[r2, s2] = [r1αr2, s1αs2] + [r1βr2, s1βs2]
= [(r1αr2)γ0(s1βs2) + (s1αs2)γ0r1βr2, s1αs2γ0s1βs2].

We prove that

[r1αr2+r1βr2, s1αs2+s1βs2] = [r1αr2γ0s1βs2+s1αs2γ0r1βr2, s1αs2γ0s1βs2],

or

r1αr2γ0s1αs2γ0s1βs2 + r1βr2γ0s1αs2γ0s1βs2 − r1αr2γ0s1βs2γ0s1αs2

− s1αs2γ0r1βr2γ0s1αs2 − r1αr2γ0s1βs2γ0s1βs2 − s1αs2γ0r1βr2γ0s1βs2 = 0.

But by using commutativity and the condition (∗∗), the above relation is sat-
isfied.
Also we have

([r1, s1]α[r2, s2])β[r3, s3] = [r1αr2, s1αs2]β[r3, s3]
= [(r1αr2)βr3, (s1αs2)βs3]
= [r1α(r2βr3), s1α(s2βs2)]
= [r1, s1]α[r2βr3, s2βs3]
= [r1, s1]α([r2, s2]β[r3, s3]).

For all [r, s] ∈ S−1R , we have

[r, s]γ0[1, 1] = [rγ01, sγ01] = [r, s],

and similarly since [1, 1]γ0[r, s] = [r, s], thus [1, 1] ∈ S−1R is an identity ele-
ment, the proof is complete. 

The Γ -ring S−1R is called the Γ-ring of fraction of R with respect to S.

Proposition 2.4. Let R, S be in Proposition 2.2. Then
(i) [0, s] = [0, 1], for all s ∈ S.
(ii) [r, s] = [rγr


, sγr


], for all r, r

 ∈ R, s ∈ S and γ ∈ Γ.
(iii) − (xαy) = x(−α)y, for all x, y ∈ R, α ∈ Γ.
(iv) [r, r] = [1, 1], for all r ∈ R.
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(iii) − (xαy) = x(−α)y, for all x, y ∈ R, α ∈ Γ.
(iv) [r, r] = [1, 1], for all r ∈ R.
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Proof. (i) Since 0γ0s− 1γ00 = 0, so [0, 1] = [0, s].
(ii) Since R is commutative Γ-ring, then rγ0sγr

 − sγ0rγr

= 0 and therefore

[r, s] = [rγr

, sγr


]. (20)

(iii) We have x(−α)y + x(α)y = x(−α+ α)y = 0, thus −(xαy) = x(−α)y.
(iv) Since rγ01− 1γ0r = r − r = 0, so [r, r] = [1, 1], for all r ∈ R. 

Theorem 2.5. If R is a Γ-ring and S = R − {0}, then S−1R is a Γ-field.

Proof. By using Theorem 2.1, (S−1R,+, ·) is a Γ-ring with identity element
[1, 1], thus for every r, s ∈ S, we prove that [r, s]−1 = [s, r]. By using commu-
tativity Γ-ring R and Proposition 2.3 (iv), we have

[r, s]γ0[s, r] = [rγ0s, sγ0r] = [rγ0s, rγ0s] = [1, 1].

Similarly [s, r]γ0[r, s] = [1, 1].
Now, we prove that (S−1R, ·) is associative. Since R is a Γ-ring, we have

([r1, s1]γ1[r2, s2])γ2[r3, s3] = [r1γ1r2, s1γ1s2]γ2[r3, s3]
= [(r1γ1r2)γ2r3, (s1γ1s2)γ2s3]
= [r1γ1(r2γ2s3), s1γ1(s2γ2s3)]
= [r1, s1]γ1([r2, s2]γ2[r3, s3]).

At the end, we prove that (S−1R, ·) is commutative. Since R is a commutative
Γ-ring, for every γ ∈ Γ, r1, r2 ∈ R, s1, s2 ∈ S we have

[r1, s1]γ1[r2, s2] = [r1γr2, s1γs2]
= [r2γr1, s2γs1]
= [r2, s2]γ[r1, s1].

Hence (S−1R,+, ·) is a Γ-field. 

At the end of this section, we give an example of matrices that are not rings
under addition and matrix multiplication ,but we will make a gamma ring of
them.

Example 2.6. Let Z be integers rings and Mm×n(Z) be the set of all m × n
matrices with entries in Z. We consider

R = {

x x


|x ∈ Z} ⊆ M1×2 and Γ = {


n
o


|n ∈ Z} ⊆ M2×1.

and we define





. : R × Γ×R −→ R

x x


.


n

o


.

y y


=


nxy nxy


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,for all

x x


,

y y


in R and for all


n
o


in Γ.

It is easy to see that R is a Γ-ring. We show that R is integral domain with

1R =

1 1


and γ0 =


1
o


.

Hence, if we consider S = R − {0}, then by using Theorem 2.2, S−1R is a
Γ-field.

Proof. For

x x


=


0 0


, then x = 0 and if


y y


∈ R, we have


x x


.


1
o


.

y y


=


0 0


⇒


xy xy


=


0 0



⇒ xy = 0
⇒ y = 0,

then

y y


=

0 0


.

Also for all

x x


∈ R we have


1 1


.

1
o


.

x x


= 1.


x x


=


x x


and


x x


.

1
o


.

1 1


= x.


1 1


=


x x


, hence R has identity

element.

With simple calculations, we get the equivalence class of [

x x


,

y y


]

is { [

z z


,

t t


] |xt = yz, x, z ∈ Z, y, t ∈ Z− {0}}. 

3. Homomorphisms of Gamma Rings

In this section, the notion homomorphism of gamma rings is defined and some
theorems will be proved.

Theorem 3.1. Let R be a Γ-ring and S−1R be a Γ-ring of fraction in Theorem
2.1. Then the mapping f : R −→ S−1R such that f(r) = [r, 1] is a Γ-ring
homomorphism.

Proof. At first we show that f is well-defined. If r1 = r2, then r1−r2 = 0. Since
r1 = r1γ01 and r2 = r2γ01, then r1γ01− r2γ01 = 0 and so [r1, 1] = [r2, 1].
Now we prove that f(r1 + r2) = f(r1) + f(r2) and f(r1γr2) = f(r1)γf(r2), for
all r1, r2 ∈ R and γ ∈ Γ. We have

f(r1)+f(r2) = [r1, 1]+ [r2, 1] = [r1γ01+ r2γ01, 1γ01] = [r1+ r2, 1] = f(r1+ r2)
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We have f(r1)γf(r2) = [r1, 1]γ[r2, 1] = [r1γr2, 1γ1] , but f(r1γr2) = [r1γr2, 1],
we get that

[r1γr2, 1] = [r1γr2, 1γ1] ⇔ r1γr2γ01γ1− r1γr2γ01 = 0
⇔ r1γr2γ1− r1γr2 = 0.

If we put α = −γ, β = γ0, x = r1, y = r2 and s1 = s2 = 1 , in condition (∗∗),
we have

1(−γ)1γ01(−γ)1γ0r1γ0r2 + r1(−γ)r2γ01γ01γ01γ01 = 0.

By Proposition 2.3 (iii), we obtain

1γ1r1γ0r2 − r1γr2 = 0.

Also by the condition (∗), we have

1γ1γ0r1γr2 − r1γr2 = 0.

Since 1γ0r1 = r1, we get that

1γr1γr2 − r1γr2 = 0.

Hence the theorem is proved. 

Proposition 3.2. Let R and R

be Γ-rings with identity elements and

f : R −→ R

be a Γ-ring epimorphism. Then f(1R) = 1R .

Proof. We prove that f(1R)γ0r

= r


γ0f(1R) = r


, for all r

 ∈ R . Since f is
surjective , there exists r ∈ R such that f(r) = r


. We have

f(1R)γ0r

= f(1R)γ0f(r) = f(1Rγ0r) = f(r) = r


,

r

γ0f(1R) = f(r)γ0f(1R) = f(rγ01R) = f(r) = r


.

Hence f(1R) = 1R . 

Proposition 3.3. If R and R

are Γ-rings with identity elements without

zero-divisor and f : R −→ R

is a non-zero Γ-ring homomorphism. Then

f(1R) = 1R .

Proof. We have

f(1R) = f(1Rγ01R) = f(1R)γ0f(1R)
⇒ f(1R)− f(1R)γ0f(1R) = 0
⇒ f(1R)γ0(1R − f(1R)) = 0
⇒ 1R − f(1R) = 0.
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Hence f(1R) = 1R . 

Proposition 3.4. Let R and R

be Γ-rings with identity elements, without

zero-divisor and f : R −→ R

is a non-zero Γ-ring homomorphism. Then

f(a−1) = (f(a))−1.

Proof. Suppose a ∈ R is invertible and a−1 is inverse of a. We have

f(aγ0a−1) = f(1R) = f(a−1γ0a)

⇒ f(a)γ0f(a−1) = 1R = f(a−1)γ0f(a)

⇒ f(a−1) = (f(a))−1. 

4. Local Gamma Rings

In this section, local gamma rings is defined and will be given several conditions
equivalent for local gamma rings.

Definition 4.1. A Γ-ideal P in Γ-ring R is prime [15], if P = R and if
AΓB ⊆ P , then A ⊆ P or B ⊆ P , for every Γ-ideals A and B in R.

Theorem 4.2. If R is a commutative Γ- ring and P is a Γ-ideal such that
P = R and aγb ∈ P , for a, b ∈ R and all γ ∈ Γ it implies that a ∈ P or b ∈ P ,
then P is prime and conversely.

Proof. =⇒) If A and B are gamma ideals in R such that AΓB ⊆ P , but A  P
and B  P , then there are a0 ∈ A and b0 ∈ B such that a0 and b0 are not in
P .
Since AΓB ⊆ P , then for every γ ∈ Γ, a0γb0 ∈ AΓB ⊆ P and by assumption
a0 ∈ P or b0 ∈ P , this is a contradiction. Thus A ⊆ P or B ⊆ P .
⇐=) Let P be a prime gamma ideal and aγb ∈ P for every a, b ∈ R and for all
γ ∈ Γ, then aΓb ⊆ P and therefore a ⊆ P or b ⊆ P , but a ∈ a and
b ∈ b thus a ∈ P or b ∈ P . 

Theorem 4.3. In a commutative Γ-ring R with identity, an ideal P is prime
if and only if S = R− P is multiplicatively closed subset.

Proof. =⇒) Let gamma ideal P be prime in R and s1, s2 ∈ S. Then s1 and
s2 aren’t in P (S = R − P ). Since P is prime, for every γ ∈ Γ , s1γs2 isn’t in
P , hence for all γ ∈ Γ , s1γs2 ∈ S , therefore s1Γs2 ⊆ S.
⇐=) Suppose S = R − P is a multiplicatively closed subset in R, then 1 ∈ S
and so S = ∅, i.e P = R.
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If aγb ∈ P for every a, b ∈ R and for every γ ∈ Γ, then aγb isn’t in S. Since S
is multiplicatively closed subset, then a or b aren’t in S, i.e a ∈ P or b ∈ P . 

Notation

Let gamma ideal P be prime in R and S = R−P . Then we write AΓP = S−1R.

Theorem 4.4. In a commutative Γ-ring R with identity, if gamma ideal P is
prime and S = R − P , then the set M = {[a, s]| a ∈ P, s ∈ S} is an ideal of
AΓP .

Proof. Since 0 ∈ P , then [0, s] ∈ M , for s ∈ S and so M = ∅. To show
that (M,+) is subgroup, for every a, b ∈ P and s, s

 ∈ S, we have aγ0s

and

bγ0s ∈ P (P is an Γ-ideal) and sγ0s
 ∈ S (S is a multiplicatively closed subset).

Thus [a, s] − [b, s

] = [a, s] + [−b, s ] = [aγ0s

 − bγ0s, sγ0s

] ∈ M .

To show that MΓAΓP ⊆ M , we consider [a, s]γ[b, s

] ∈ MΓAΓP .

Since P is an ideal in R and S is a multiplicatively closed subset, then aγb ∈ P
and sγs

 ∈ S. Thus [a, s]γ[b, s

] = [aγb, sγs


] ∈ M , i.e MΓAΓP ⊆ M . 

Theorem 4.5. Let M be the set of all non-invertible elements of Γ-ring R,
then the following properties are equivalent:
(1) M is additively closed (∀a1, a2 ∈ M,a1 + a2 ∈ M),
(2) M is a two-sided gamma ideal of R,
(3r) M is the largest proper right gamma ideal,
(3l) M is the largest proper left gamma ideal,
(4r) In gamma ring R there exists a largest proper right ideal,
(4l) In gamma ring R there exists a largest proper left ideal,
(5r) For every r ∈ R either r or 1 − r is right invertible,
(5l) For every r ∈ R either r or 1 − r is left invertible,
(6) For every r ∈ R either r or 1 − r is invertible.

Proof. (1) ⇒ (2): Let M be additively closed. At first, we show that every
right (left) invertible element is invertible. If b ∈ R is right invertible, then
there exists b

 ∈ R such that bγ0b

= 1, to show that b


γ0b = 1, we have two

cases.
Case 1. If b


γ0b isn’t in M , then there is s ∈ R with sγ0(b


γ0b) = 1. A right

multiplication by γ0b

gives

sγ0b

γ0bγ0b


= 1γ0b


=⇒ sγ0b


γ01 = b



=⇒ sγ0b

= b



=⇒ b

γ0b = 1.
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Case 2. If b

γ0b ∈ M , then 1 − b


γ0b isn’t in M , otherwise if 1 − b


γ0b ∈ M ,

we have b

γ0b ∈M and M is an additively closed set, then

1 = (1− b

γ0b) + b


γ0b ∈M.

It is a contradiction.
Thus there exists s ∈ R such that sγ0(1− b


γ0b) = 1. The right multiplication

by γ0b

gives

sγ0(1− b

γ0b)γ0b


= 1γ0b


=⇒ sγ0(1γ0b


− b


γ0bγ0b


) = b



=⇒ sγ0(b

− b


γ01) = b



=⇒ sγ0(b

− b


) = b



=⇒ 0 = b

,

it is contradiction to bγ0b

= 1. Hence by using case 1, b is invertible.

Now, we prove that for every m ∈ M , r ∈ R and γ ∈ Γ, rγm ∈ M and
mγr ∈M .
Suppose rγm is not in M , then there exists s ∈ R such that rγmγ0s = 1. By
using case 1, sγ0rγm = 1 and by the contradiction (∗), sγrγ0m = 1. Thus sγr
is inverse of m, in contradiction with m ∈ M . Hence rγm ∈ M and similarly
mγr ∈M .
Let

n
i=1 riγimi ∈ RΓM . Since riγimi ∈ M , for every 1  i  n and M is

an additively closed set, then
n

i=1 riγimi ∈ M , i.e RΓM ⊆ M and similarly
MΓR ⊆M . Hence M is two-sided gamma ideal of R.
(2) =⇒ (3r): Let M be two-sided gamma ideal in R. Then M is right gamma
ideal. Since 1 isn’t in M , then M = R.
Let B be proper right gamma ideal in R. We show that B ⊆ M . If b ∈ B,
then bΓR is right gamma ideal of B and therefore bΓR is a proper right gamma
ideal in R. Thus b isn’t invertible and hence b ∈M , i.e B ⊆M .
(3r) =⇒ (4r): It is clearly that M is a largest proper right gamma ideal.
(4r) =⇒ (5r). Let N be the largest proper right ideal. Let r ∈ R and r and
1 − r aren’t invertible. Then rΓR and (1 − r)ΓR are proper gamma ideals of
R, hence rΓR ⊆ N and (1− r)ΓR ⊆ N .
We have 1 = (1 − r)γ01 + rγ01 ∈ (1 − r)ΓR + rΓR ⊆ N , i.e 1 ∈ N , in
contradiction with N  R.
(5r) =⇒ (6): It suffices to show that every right invertible element is invertible.
Let b has right inverse like b


. Then bγ0b


= 1.

Let b

γ0b ∈ R. We have two cases:

Case 1. b

γ0b is right invertible, hence there is s ∈ R such that b


γ0bγ0s = 1.
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The left multiplication by (bγ0) gives

bγ0b

γ0bγ0s = bγ01 =⇒ 1γ0bγ0s = b

=⇒ bγ0s = b

=⇒ b

γ0b = 1.

Case 2. (1− b

γ0b) is right invertible, hence there is s ∈ R with

(1− b

γ0b)γ0s = 1. The left multiplication by (bγ0) gives

bγ0(1− b

γ0b)γ0s = bγ01 =⇒ (bγ01− bγ0b


γ0b)γ0s = b

=⇒ (b− 1γ0b)γ0s = b

=⇒ (b− b)γ0s = b

=⇒ 0 = b.

It is in contradiction to bγ0b

= 1. Hence by using case 1, b


γ0b = 1.

(6) =⇒ (1). Suppose m1,m2 ∈M , we show that m1 +m2 ∈M .
If m1 + m2 isn’t in M , then m1 + m2 is invertible, so there is s ∈ R with
(m1 +m2)γ0s = 1 thus m1γ0s = 1−m2γ0s.
But m1γ0s ∈M must be held, otherwise m1γ0s is invertible, i.e there is b ∈ R
such thatm1γ0sγ0b = 1 and then sγ0b is right inverse ofm1. Since (6) =⇒ (5r)
holds, we can use the fact that every right invertible element is invertible. Hence
m1 isn’t in M , there is contradiction.
Similarly it is proved thatm2γ0s ∈M and by using (6), (1−m2γ0s) is invertible
and therefore m1γ0s is invertible, in contradiction with m1γ0s ∈M .

Definition 4.6. A gamma ring R which satisfies the equivalent properties of
Theorem 4.4 is called local gamma ring.

Corollary 4.7. AΓP is a local Γ-ring.

Proof. It follows from Theorem 4.3 and Theorem 4.4. 
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Case 2. If b

γ0b ∈ M , then 1 − b
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Let b has right inverse like b


. Then bγ0b


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Let b

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