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Abstract. One of the first constructions of algebra is the quotient
field of a commutative integral domain, constructed as a set of frac-
tions, which can lead to a very useful technique in commutative ring
theory. In this article the researchers considered rings of fractions for
gamma rings and some new characterizations were developed in gamma
rings of fractions.
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1. Introduction

The notation of a gamma ring was first introduced by Nobusawa [10] as a
generalization of a classical ring and afterward Barnes [2] improved the concepts
of Nobusawa’s I'-ring and developed the more general I'-ring in which all clas-
sical rings were contained in this I'-ring. We know, quotient fields are applied
for making valuation rings and Dedekind domains and Dedekind domains are

used in numbers theory [9)].

In this paper the researchers constructed fraction I'-ring and discussed their

characteristics and relations by using local I'-rings.
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Let R and I' be two additive abelian groups and there exists a mapping
(z,7,y) — avyy of R xT' x R — R, which satisfies the conditions:

(@) (x+y)vz=ayvz+yyz, (1 +72)y =271y + 272,
ry(y + z) = zyy + w2,
(1) (zy1y)y2z = x71(Y122),

for all z,y,z € R and ~,71,72 € I'. Then R is called a gamma ring.
If there exists 1r € R and ~y € I such that for all r € R,
1gvor = ryolg = r, then 1 = 1 is called identity element [13].

Let R be a I'-ring with 1. An element a € R is called invertible if there exists
b € R such that avyyb = bypa = 1, also b is unique and called the multiplicative

inverse of a and is denoted by a~!.

An element ¢ € R is said to be zero -divisor if there exists b # 0 such that
ayob = byga = 0.

Let R be I'-ring. If for all a,b € R and for all v € T', ayb = bya, then R is called
commutative I'-ring.

A subset I of T-ring R is said left(or right) gamma ideal if I is an additive
subgroup of R and RI'T C I (orIT'R C I) [11].

Let R be a I'-ring. The ideal generated by a € R is the intersection of all ideals
contain a and

(a) = {na + zaa + afy + Zle wy;adv; | n k € Z,a,x,y, u;,v; € R,

a, B, Yis 0; € F}

A T -ring homomorphism [6] is a mapping f of I'-ring R to I'-ring R’ such
that:

(i) flz+y) = fl@)+ fly), (@) flzyy) = flx)vf(y), for all z,y € R and
vyel.

A multiplicatively closed subset of I'-ring R is a subset S of R such that 1 € S
and s1I'sy C S, for all 51,50 € S.

Let R be a I'-ring with 1 and %« : R X I' X R — R be a map on R such that
(R — {0}, %) be a group. Then R is called T'-field.

We consider the following assumptions

(x) zayBz = xPyaz, for all z,y,z€ R and «,B €T,
(%) (s1as2)y0(s10082)70(2BY) + (51852)70(51852) 70 (200y) = 0,

for all z,y,z € R,s1,82 € S, 0, 8 € T [4].
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2. Fractions of Gamma Rings

Throughout this section , the word gamma ring R means a commutative gamma
ring with 1 and without zero-divisor.

Proposition 2.1. If a and b are invertible in R , so is ayob and

(avob)™t = b y0a™".

Proof.

(av0b)70(b™ 00~ ") = ayo(byob™ " )yoa ™"

= ayolyoa™"
= (avyol)yoa™"
= a’yoa_l
pr— 17

and similarly (b~'voa=1)yo(ayeb) =1. O

Proposition 2.2. Let R be a I'-ring and S = R — {0}. We define relation ~
on R x S as follows :

(a,8) ~ (b,t) <= avyot — bys =0, for a,b € R and s,t € S. Then ~ is an
equivalence relation.

Proof. We show that the relation ~ is reflexive, symmetric and transitive.
Since for all @ € R and s € S,avps — ays =0, so (a,s) ~ (a, s).

If (a, s) ~ (b, 1), then ayot—byps = 0, and so byps—a~yet = 0. Thus (b, t) ~ (a, s).
If (a,s) ~ (b,t) and (b,t) ~ (c,u) , then we have

ayot — byos = 0, (1)
byou — cyot = 0. (2)

On the other hand, a multiplication by you of (1) and 7gs of (2) gives

ayotyou — byosyou = 0, (3)
byouyos — cyotyos = 0. (4)

Sum of (3) and (4), we obtain
ayotyou — cyotyos = 0. (5)
By using commutativity, we have

(ayou — cy08)y0t = 0. (6)
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We have t # 0 and R is without zero-divisor, which gives ayou — c¢yps = 0 and
thus (a, s) ~ (¢, u).
Hence, the proof is complete. [

Theorem 2.3. Let [a, s] denote the equivalence class of (a,s), and ST*R denote
the set of equivalence classes. If R satisfies the conditions (x) and (xx), we define
addition and multiplication of these fractions as follows:

STIRxT'x S 'R — SR
[Tv S] + [7"/, s/] = [7"705/ + 5'707"/» S'YOSI]
[r,sylr,s]=[ryr,sys],

then
(i) these definitions are well-defined.
(ii) ST'R is a T-ring with identity element [1,1].

Proof. (i): If [r1, s1] = [}, s;] and [rg, s2] = [r, 53] , then we have

T17%51 — $1707; = 0, (7)

T2Y0S9 — S2Y0T = 0. (8)
A multiplication by syvpsq of (7) and s17y0s, of (8 ) gives
1705170527052 — 5177170527052 = 0, (9)

T27Y052Y0517051 — 5270T2Y0S51Y05; = 0. (10)
Sum of (9) and (10), we obtain
T1705170527082 — $1707170527052 + 7270527051701 — $2707270517081 = 0.

Since R is commutative I'-ring ,we have

’ / / ’ ’

’ ’ !’
T170827051Y0S2 + T270517081Y0S2 — T170S27051Y0S2 — $1Y0T2Y0517052 = 0,

therefore

(717052 + 727051)7051%52 — (117052 + 517072) V0517052 = 0, (11)

[T17082 + 727051, $17052] = [117082 + 517072, $17052], (12)

[Tla 81] + [T27 32] = [Tlla 5/1] + [T/27 8/2] (13)
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Thus addition is well-defined.

Now, let [r1, $1] = [re, $2], [rll,sll] = [r;,s;] and v = vy, = 72 , we have
T1Y0S2 — S17Y0T2 = O, (14)
717083 — 81707 = 0. (15)

On the other hand,a multiplication by 7}7ysy of (14) and ro7ys; of (15) gives

T1Y0827YT1YS2 — r17S2YS170m2 = 0, (16)

T17089YT2YS1 — 81707 YT2ys1 = 0. (17)

By using the sum of (16) and (17) and applying the condition (x), we obtain

FIYP1Y0827Y50 — $1781Y0T27Ts = 0, (18)
or
(11771, 81781] = [reyra, $27S2), (19)
therefore [r1, s1]7[ry, 51] = [r2, s27[r3, s3).

Thus the multiplication is well-defined.

Proof (ii). Since S is a multiplicatively closed subset of R and R is I — ring,
therefore r’yrl € R and 573/ €S, for all r, r e R, s, s €S and v €' . Thus
[r,s\y[r',s'] = [ryr', svs| € STIR.

For [r1,s1], [r2, s2],[r3, s3] € ST'R and a € T, we have

([r1, s1] + [ro, s2))[rs, s3] = [r1, s1]a[rs, s3] + [r2, s2]alrs, s3],
because
([r1,s1] + [r2, s2])alrs, s3] = [r17052 + 817072, S17082][r3, 53]
= [r1vyoS2ars + S1Y07r2073, S17Y0S20:83].
Also

[r1, 81]a[r3, s3] + [r2, s2]a[rs, s3] = [r1ars, syass] 4 [rears, saass)

= [r1arzypsaass + 510837072073, S10653Y0 52083
It is easy to see that

[r1708200r3 + S1707r2073,81Y0S2083] = [r1QT370520:83 + S1Q:83Y0T200T"3, S1(:S3Y0S24S3]
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Now, we show that [r1, s1](a+ §)[r2, s2] = [r1, s1]a[re, s2] + [r1, s1]B[r2, s2], we
have
[r1,s1](a+ B)[ra, s2] = [r1(a + B)ra, s1(a + )sa]
= [rarg 4+ r10rg, s1082 + $1052),
[r1, s1]afra, so] + [r1, s1]B[ra, s2] = [riara, syasa] + [r18r2, 51059]

= [(riar2)Y0(s1882) + (s189)7071 812, $10827081 382).-

We prove that

[riare + 11012, S1ase + $1082] = [r1arayos18sa + s1asayori Bra, 10827081 82),

or

T102Y0S51082Y051 352 + T18T27051052Y051 352 — T1aTr27Y051 85270510052

— 51827071 fr2Y051082 — r1ar2Y051 3527051352 — s1a82Y071 8127051852 = 0.

But by using commutativity and the condition (xx), the above relation is sat-
isfied.
Also we have

([r1, s1]afra, s2])B[rs, s3] = [r1arse, s1ass]B[rs, s3]
= [(r1are)Prs, (s1as2)Bss]
= [ria(r2frs), s1a(s23s2)]
= [r1, s1]a[rafrs, sos3]
=

r1, s1]a([ra, s2]B[rs, s3])-

For all [r,s] € STIR , we have

[7‘, S]VO[L 1] = [T’YO]-, 8’701] = [7‘, S]v

and similarly since [1,1]yo[r, s] = [r,s], thus [1,1] € ST!R is an identity ele-
ment, the proof is complete. [

The I' -ring S~'R is called the I'-ring of fraction of R with respect to S.

Proposition 2.4. Let R, S be in Proposition 2.2. Then

(1) [0,s] =10, 1], fc/)r all se€S. /

(@) [r,s] = [ryr ,syr], for all r,r € R, s€8 and yeT.
(7ii) — (ray) =x(—a)y, for all z,ye R, a€cl.

() [r,r] =[1,1], for all r € R.
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Proof. (i) Since 0y9s — 170 =0, so [0,1] =0, s].

(#4) Since R is commutative I'-ring, then rygsyr — syoryr = 0 and therefore
[r, 8] = [ryr’ s syr]. (20)

(#4i) We have z(—a)y + z(@)y = 2(—a + o)y = 0, thus —(zay) = z(—a)y.

(i) Since rygl — 1yor =r —r =0, so [r,r] = [1,1], for all r € R. O

Theorem 2.5. If R is a T'-ring and S = R — {0}, then S™'R is a T'-field.

Proof. By using Theorem 2.1, (S~'R,+,-) is a ['-ring with identity element

[1,1], thus for every r,s € S, we prove that [r,s]~! = [s,r]. By using commu-
tativity I-ring R and Proposition 2.3 (iv), we have
[r, slvols, r] = [ry0s, s70r] = [0, 7v08] = [1,1].
Similarly [s, r]yo[r, s] = [1, 1].
Now, we prove that (ST!R,-) is associative. Since R is a I-ring, we have
([r1, s1]yilre, s2])v2lrs, s3] = [rivire, siy182]72(73, 53]
= [(ri7172)7273, (517152)7253]
= [r171(r27283), 8171 (827253)]
= [r1, s1]n([r2, s2]yzlrs, ss)).
At the end, we prove that (S~!R,-) is commutative. Since R is a commutative
[-ring, for every v € I',r1, 72 € R, 51,52 € S we have
[r1, s1]71(ra, s2] = [r1yra, s17s2]
= [royr1, s27751]
= [ro, so|v[r1, $1]-
Hence (SR, +,-) is a I-field. [
At the end of this section, we give an example of matrices that are not rings

under addition and matrix multiplication ,but we will make a gamma ring of
them.

Example 2.6. Let Z be integers rings and M,,x,(Z) be the set of all m x n
matrices with entries in Z. We consider

R={[= x]|er}gM1X2andF={[H In € Z} C Mayy.

and we define
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Jfor all [ T T ] , [ Yoy ] in R and for all { Z } inT.

It is easy to see that R is a I'-ring. We show that R is integral domain with
1

lR—[]. l}and*yo—[o

Hence, if we consider S = R — {0}, then by using Theorem 2.2, S™'R is a

I-field.

Proof.For[a: x];é[O O],thenm#Oandif[y y]eR,wehave

then [y y | =[0 0].
Also for all [ T x ] € R we have
[1 1]{(1)}[33 x]zl.[x x]:[a: x]and

(o z]. [H (1 1]=a[1 1]=[ =] hence R has identity
element.

With simple calculations, we get the equivalence class of [[ z = |,[ v y |]
s (([z 2]t t]][t=yzrzcZyteZ—{0)). O

3. Homomorphisms of Gamma Rings

In this section, the notion homomorphism of gamma rings is defined and some
theorems will be proved.

Theorem 3.1. Let R be a I'-ring and S™' R be a I'-ring of fraction in Theorem
2.1. Then the mapping f : R — S~'R such that f(r) = [r,1] is a I-ring
homomorphism.

Proof. At first we show that f is well-defined. If r; = r5, then r; —ry = 0. Since
r1 =11yl and ro = 19901, then r1991 — 79701 = 0 and so [ry, 1] = [ro, 1].
Now we prove that f(ry +72) = f(r1) + f(r2) and f(riyr2) = £(r1)7£(r), for
all 11,79 € R and v € I'. We have

f(r) + f(re) = [r1, 1]+ [r2, 1] = [r1v0l +r2v01, 1v01] = [r1 472, 1] = f(r1+72)
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We have f(r1)yf(r2) = [r1, 1]7¥[re, 1] = [r1yre, 191] , but f(riyrz) = [riyre, 1,
we get that

[r1yre, 1] = [r1yre, 191] < r1yrevolyl — riyrayl =0
& riyreyl —ryyre = 0.

If we put « = —y, 8 =10, x =71,y = 12 and s = s2 = 1 , in condition (*x),
we have

1(=7)1v01(=y)1v0m17072 + 71(=7)r270 1701701701 = 0.

By Proposition 2.3 (iii), we obtain

Iylryyory — riyre = 0.
Also by the condition (x), we have

1Iylvyoriyra — r1yr2 = 0.
Since 1ygr; = 1, we get that

1yriyre —riyre = 0.

Hence the theorem is proved. [

Proposition 3.2. Let R and R be I'-rings with identity elements and
f:R — R be a I-ring epimorphism. Then f(lr) = 1p

Proof. We prove that f(1z)yor =7 v0f(1r) = r/, for all 7 € R. Since f is
surjective , there exists » € R such that f(r) =r . We have

/

Fr)vor = f(Lr)r0f(r) = fLryor) = f(r) =1,
r'v0f(1r) = f(r)v0f(1r) = f(ryole) = f(r) =7
Hence f(1g) =15 . O
Proposition 3.3. If R and R’ are T'-rings with identity elements without

zero-divisor and f : R — R’ is a non-zero I'-ring homomorphism. Then
f(lr) = L
Proof. We have
f(Igr) = f(1ry0lr) = f(1r)0f(1R)
= [f(lr) — f(ArR)0f(1r) =0

= f(r)w(lg — f(1r)) =0
= lp —f(1r) =0
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Hence f(1g) =15. O

Proposition 3.4. Let R and R be I-rings with identity elements, without
zero-divisor and f : R —— R 1is a non-zero I'-ring homomorphism. Then

fla™h) = (f(a))~"

Proof. Suppose a € R is invertible and a~! is inverse of a. We have

flavoa™") = f(1r) = f(a 'y0a)
= fla)fla™") =1z = fa ) f(a)
= fl@h)=(f@) . O

4. Local Gamma Rings

In this section, local gamma rings is defined and will be given several conditions
equivalent for local gamma rings.

Definition 4.1. A T'-ideal P in I'-ring R is prime [15], if P # R and if
AT'B C P, then AC P or B C P, for every I'-ideals A and B in R.

Theorem 4.2. If R is a commutative I'- ring and P is a T'-ideal such that
P # R and ayb € P, for a,b € R and all v € T it implies that a € P or b € P,
then P is prime and conversely.

Proof. =) If A and B are gamma ideals in R such that AT'B C P, but A 7,@ P
and B z P, then there are ag € A and by € B such that ag and by are not in
P.

Since AI'B C P, then for every v € I', agybg € AI'B C P and by assumption
ag € P or by € P, this is a contradiction. Thus A C P or B C P.

<=) Let P be a prime gamma ideal and ayb € P for every a,b € R and for all
v € T, then (a)I’'(b) C P and therefore (a) C P or (b) C P, but a € (a) and
be (b) thusae Porbe P. O

Theorem 4.3. In a commutative I'-ring R with identity, an ideal P is prime
if and only if S = R — P is multiplicatively closed subset.

Proof. =) Let gamma ideal P be prime in R and s1,s2 € S. Then s; and
s9 aren’t in P (S = R — P). Since P is prime, for every 7 € I' | s17ys9 isn’t in
P, hence for all vy € T' | s1ys2 € S, therefore s1I'so C S.

<) Suppose S = R — P is a multiplicatively closed subset in R, then 1 € §
and so S # 0, i.e P # R.
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If ayb € P for every a,b € R and for every v € I', then a~vb isn’t in S. Since §
is multiplicatively closed subset, then a or b aren’t in S,i.ea € Porbe P. O

Notation

Let gamma ideal P be prime in R and S = R— P. Then we write Arp = S™'R.

Theorem 4.4. In a commutative I'-ring R with identity, if gamma ideal P is
prime and S = R — P, then the set M = {[a,s]| a € P, s € S} is an ideal of
APP-

Proof. Since 0 € P, then [0,s] € M, for s € S and so M # (. To show
that (M, +) is subgroup, for every a,b € P and s,s €9, we have ayys and
byos € P (P is an T-ideal) and syps € S (S is a multiplicatively closed subset).
Thus [a,s] — [b,s'] = [a,s] + [~b,s ] = [ay0s — byos, 5708 | € M.

To show that MT Arp C M, we consider [a, s]y[b, s'] € MT Arp.

Since P is an ideal in R and S is a multiplicatively closed subset, then avyb € P
and sys € S. Thus [a,s]y[b,s| = [ayh,svs | € M, i.e MU App C M. O

Theorem 4.5. Let M be the set of all non-invertible elements of I'-ring R,
then the following properties are equivalent:
(1) M is additively closed (Vay,a2 € M,a1 +az € M),

)

r) M is the largest proper right gamma ideal,

1) M is the largest proper left gamma ideal,

r) In gamma ring R there exists a largest proper right ideal,
1) In gamma ring R there exists a largest proper left ideal,
r) For every r € R either v or 1 —r is right invertible,

1) For every r € R either r or 1 —r is left invertible,

) For every r € R either r or 1 —r is invertible.

Proof. (1) = (2): Let M be additively closed. At first, we show that every
right (left) invertible element is invertible. If b € R is right invertible, then
there exists b € R such that vab/ = 1, to show that blﬂyob = 1, we have two
cases.

Case 1. If b/’yob isn’t in M, then there is s € R with S’yo(b,'yob) = 1. A right
multiplication by 'yob/ gives

5700 Yobyob = 170D = sy0b 0l = b
= S’)/ob, =

— byb=1.
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Case 2. If b ygb € M, then 1 — b yob isn’t in M, otherwise if 1 — b b € M,
we have b v9b € M and M is an additively closed set, then

1=(1=b7b)+b b€ M.

It is a contradiction.
Thus there exists s € R such that syo(1 — b y9b) = 1. The right multiplication
by vob gives

s570(1 = b'y0b)y0b = 1700 = s70(170b — b yobyob ) = b’
= sy0(b —byl) =0
— Sryo(bl _ b/) _ b/

— 0=10,

it is contradiction to b'yob, = 1. Hence by using case 1, b is invertible.

Now, we prove that for every m € M, r € Rand v € T, rym € M and
myr € M.

Suppose rym is not in M, then there exists s € R such that rym~yys = 1. By
using case 1, sygrym = 1 and by the contradiction (x), syryom = 1. Thus syr
is inverse of m, in contradiction with m € M. Hence rym € M and similarly
myr € M.

Let 2?21 rivim; € RCM. Since r;v;m; € M, for every 1 < i < n and M is
an additively closed set, then > ; 7;9;m; € M, i.e RTM C M and similarly
MTR C M. Hence M is two-sided gamma ideal of R.

(2) = (3r): Let M be two-sided gamma ideal in R. Then M is right gamma
ideal. Since 1 isn’t in M, then M # R.

Let B be proper right gamma ideal in R. We show that B C M. If b € B,
then bI'R is right gamma ideal of B and therefore bI'R is a proper right gamma
ideal in R. Thus b isn’t invertible and hence b € M, i.e B C M.

(3r) = (4r): It is clearly that M is a largest proper right gamma ideal.
(4r) = (5r). Let N be the largest proper right ideal. Let r € R and r and
1 — r aren’t invertible. Then rT'R and (1 — r)['R are proper gamma ideals of
R, hence rTR C N and (1 —r)TR C N.

We have 1 = (1 — )yl + rl € (1 =) TR+ TR C N, iel € N, in
contradiction with N' & R.

(5r) = (6): It suffices to show that every right invertible element is invertible.
Let b has right inverse like b'. Then b'yob/ =1.

Let b/'yob € R. We have two cases:

Case 1. b,q/ob is right invertible, hence there is s € R such that b/vobq/os =1.
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The left multiplication by (byy) gives

byob Yobros = byol = 1yobyos = b
= bys=2>

— bygb=1.

Case 2. (1 — b yb) is right invertible, hence there is s € R with
(1 — b ~vb)yos = 1. The left multiplication by (byy) gives

byo(1 — b/fyob)’yos =byl = (byl - byob Yob)Y0s = b
= (b—1vb)yros =10
= (b—Db)ys=1b
= 0=10.

It is in contradiction to vab/ = 1. Hence by using case 1, b/%b =1.
(6) = (1). Suppose mq1,ms € M, we show that m; + mq € M.

85

If my + mo isn’t in M, then my + mo is invertible, so there is s € R with

(my + ma)y0s = 1 thus miyps =1 — mayps.

But myvys € M must be held, otherwise m17vys is invertible, i.e there is b € R
such that mivpsy0b = 1 and then svyb is right inverse of m;. Since (6) = (5r)
holds, we can use the fact that every right invertible element is invertible. Hence

my isn’t in M, there is contradiction.

Similarly it is proved that mavyps € M and by using (6), (1—ma~s) is invertible

and therefore m7ygys is invertible, in contradiction with mivyys € M.

Definition 4.6. A gamma ring R which satisfies the equivalent properties of

Theorem 4.4 s called local gamma ring.
Corollary 4.7. Arp is a local I'-ring.

Proof. It follows from Theorem 4.3 and Theorem 4.4. O
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