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Abstract. Differintegral theorems are applied to solve some ordinary
differential equations and fractional differential equations. By using these
theorems, we obtain different results in the fractional differintegral forms.
In this paper, we aim to solve the radial Schrödinger equation under the
potential V (r) = H/r2 − K/r + Lrκ in κ = 0,−1,−2 cases. We also
obtain the solutions in the hypergeometric forms.
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1. Introduction

As is known, the order of derivative consists of an integer in ordinary calcu-
lus; differentiation with integer order is always provided for a favorable func-
tion. What’s interesting is that a function can be held differentiation with
any arbitrary order in fractional calculus that is an area of mathematics that
grows out of the traditional definitions of the calculus integral and derivative
operators. And, same situation is valid for the integration. So, differentiation
and integration are generalized such as differintegral in fractional calculus the-
ory. This theory has an important position in areas of science and engineering
such as robot technology, PID control systems, Schrödinger equation, heat
transfer, relativity theory, economy, filtration, controller design, mechanics,
optics, modelling and so on [12, 14, 16, 17, 21]. There has been an important
development in fractional calculus in recent years; see the monographs of Kil-
bas et al. [7] and the fractional differintegral equations of Tu et al. [19], Lin et
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al. [10], Ortigueira [15] and etc.
Riemann-Liouville differintegral definitions are, respectively,

aD
−µ
t ϕ(t) = [ϕ(t)]−µ =

1
Γ(µ)

 t

a

ϕ(ω)
(t− ω)1−µ

dω (t > a, µ > 0), (1)

and,

aD
µ
t ϕ(t) = [ϕ(t)]µ =

1
Γ(k − µ)

dk

dtk

 t

a

ϕ(ω)
(t− ω)µ+1−k

dω, (2)

(k − 1  µ < k, k ∈ N).

The Schrödinger equation has an important place in fractional calculus. In
this contex, many scientific works was suggested. For instance, in [4], based
on the Riesz definition of the fractional derivative the fractional Schrödinger
equation with an infinite well potential is studied by Herrmann. And, Laskin
[9] presented some properties of the fractional Schrödinger equation. In [8], the
path integrals over the Levy paths are defined and fractional quantum and
statistical mechanics have been developed via new fractional path integrals ap-
proach. A fractional generalization of the Schrödinger equation has been found
by Laskin. Wang [20] expressed fractional Schrödinger equations with poten-
tial and optimal controls. The fractional Schrödinger equation that contains
the quantum Riesz fractional derivative instead of the Laplace operator is re-
visited for the case of a particle moving in the infinite potential well by Luchko
in [11]. Bayin [2] showed effective potential approach and presented a free par-
ticle solution for the space and time fractional Schrödinger equation in general
coordinates in terms of Fox’s H-functions. In [18], some applications of a frac-
tional approach to the Schrödinger equation are discussed by Rozmej. Jeng
[5] studied on the one-dimensional infinite square well and presented that the
purported ground state, which is based on a piecewise approach, is definitely
not a solution of the fractional Schrödinger equation for the general fractional
parameter. In [6], Khan formed approximate solutions of the time-fractional
Schrödinger equations, with zero and nonzero trapping potential, by homotopy
analysis method HAM.
In present paper, we deal with radial part of the Schrödinger equation given by
the potential V (r) = H/r2−K/r+Lrκ. The radial equation is a second-order
homogeneous ordinary differential equation with variable coefficients. And,
fractional calculus theorems can be apply to such equations.

2. Preliminaries

Definition 2.1. If ϕ(z) is analytic and has no branch point inside and on C,
where C := {C−, C+}, C− is a contour along the cut joining the points z and
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−∞ + iIm(z), which starts from the point at −∞, encircles the point z once
counter-clockwise, and returns to the point −∞, and C+ is a contour along the
cut joining the points z and ∞ + iIm(z), which starts from the point at ∞,
encircles the point z once counter-clockwise, and returns to the point at ∞,

ϕµ(z) :=
Γ(µ+ 1)

2πi



C

ϕ(t)dt
(t− z)µ+1

(µ /∈ Z−),

and,
ϕ−k(z) := lim

µ→−k
ϕµ(z) (k ∈ Z+),

where t = z, −π  arg(t−z)  π for C− and, 0  arg(t−z)  2π for C+, then
ϕµ(z) (µ > 0) is said to be the fractional derivative of ϕ(z) of order µ and,
ϕµ(z) (µ < 0) is said to be fractional integral of ϕ(z) of order −µ, provided
that | ϕµ(z) |< ∞ (µ ∈ R) [3, 13, 15].

Lemma 2.2. [Linearity] Let ϕ(z) and ψ(z) be analytic and single-valued func-
tions. If ϕµ(z) and ψµ(z) exist, then

[αϕ(z) + βψ(z)]µ = αϕµ(z) + βψµ(z), (3)

where α and β are constants and, µ ∈ R, z ∈ C [21].

Lemma 2.3. [Index law] Let ϕ(z) be an analytic and single-valued function. If
(ϕη)µ(z) and (ϕµ)η(z) exist, then

(ϕη)µ(z) = (ϕη+µ)(z) = (ϕµ)η(z), (4)

where µ, η ∈ R, z ∈ C and
 Γ(µ+η+1)
Γ(µ+1)Γ(η+1)

 < ∞ [21].

Lemma 2.4. [Generalized Leibniz rule] Let ϕ(z) and ψ(z) be analytic and
single-valued functions. If ϕµ(z) and ψµ(z) exist, then

[ϕ(z)ψ(z)]µ =
∞

k=0

Γ(µ+ 1)
Γ(µ+ 1 − k)Γ(k + 1)

ϕµ−k(z)ψk(z), (5)

where µ ∈ R, z ∈ C and
 Γ(µ+1)
Γ(µ+1−k)Γ(k+1)

 < ∞ [21].

Remark 2.5. Let ϑ be a constant as ϑ = 0. Then [21],

(eϑz)µ = ϑµeϑz (µ ∈ R, z ∈ C), (6)

(e−ϑz)µ = e−iπµϑµe−ϑz (µ ∈ R, z ∈ C), (7)
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(zϑ)µ = e−iπµ
Γ(µ− ϑ)
Γ(−ϑ) zϑ−µ


µ ∈ R, z ∈ C,


Γ(µ− ϑ)
Γ(−ϑ)

 <∞

. (8)

Remark 2.6.

Γ(µ− k) = (−1)kΓ(µ)Γ(1− µ)
Γ(k + 1− µ)

(k ∈ Z+ ∪ {0}, µ ∈ R). (9)

The following theorem given by Lin et al. [10] is the main theory of this paper:

Theorem 2.7. Let ϕ−µ = 0 where ϕ is a given function and, M(z;m) and
N(z;n) be polynomials in z of degrees m and n, respectively, given by

M(z;m) =
m

k=0

akz
m−k = a0

m

j=1

(z − zj) (a0 = 0,m ∈ N), (10)

and,

N(z;n) =
n

k=0

bkz
n−k (b0 = 0, n ∈ N). (11)

Thus, the nonhomogeneous linear ordinary fractional differintegral equation

M(z;m)χη(z) +


m

k=1


µ

k


Mk(z;m) +

n

k=1


µ

k − 1


Nk−1(z;n)


χη−k(z)

+

µ

k


n!b0χη−n−1(z) = ϕ(z) (m,n ∈ N, µ, η ∈ R), (12)

has a particular solution as follows

χ(z) =


ϕ−µ(z)
M(z;m)

eσ(z;m,n)



−1

e−σ(z;m,n)



µ−η+1

, (13)

(z ∈ C\{z1, ..., zm}),
where for suitable condition,

σ(z;m,n) =
 z N(ζ;n)

M(ζ;m)
dζ (z ∈ C\{z1, ..., zm}), (14)

confirmed that the second component of Equ. (13) exists. Moreover, the homo-
geneous linear ordinary fractional differintegral equation

M(z;m)χη(z) +


m

k=1


µ

k


Mk(z;m) +

n

k=1


µ

k − 1


Nk−1(z;n)


χη−k(z)
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+

µ

k


n!b0χη−n−1(z) = 0 (m,n ∈ N, µ, η ∈ R), (15)

has solutions as follows

χ(z) = α[e−σ(z;m,n)]µ−η+1, (16)

where σ(z;m,n) is given by Equ. (14) and, α is an arbitrary constant [10].

3. Main Results

The radial Schrödinger equation under the potential V (r) = H/r2−K/r+Lrκ
is defined as [1]

R2(r) +
2m
2


E − H

r2
+
K

r
− Lrκ − l(l + 1)2

2mr2

R(r) = 0, (17)

where H,K and L are positive constants. Now, we get

− λ2 =
2mE
2

, H =
2mH
2

, K =
2mK
2

,

L =
2mL
2

, ρ = l(l + 1), τ = H+ ρ.
(18)

And, by substituting (18) into (17), we have

r2R2(r) − (λ2r2 −Kr + Lrκ+2 + τ)R(r) = 0. (19)

According to the values of κ = 0,−1,−2, Equ. (19) is given by

r2R2(r) − [(λ2 + L)r2 −Kr + τ ]R(r) = 0 (κ = 0), (20)

r2R2(r) − [λ2r2 + (L−K)r + τ ]R(r) = 0 (κ = −1), (21)

r2R2(r) − [λ2r2 −Kr + (L+ τ)]R(r) = 0 (κ = −2). (22)

In this paper, we use the fractional calculus theorems for (20), (21) and (22)
and so, we find particular solutions of the radial Schrödinger equation in the
fractional differintegral forms.

Theorem 3.1. If | ϕµ(z) |< ∞ (µ ∈ R) and ϕ−µ = 0, then

Az2χ2 +Bzχ1 + (Dz2 + Ez + F )χ = ϕ, (23)

(A,D = 0, z ∈ C\{0}, χ = χ(z)),
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has a particular solution such as:

χ = zνeϑz


A−1z−(µ+1)+

2Aν+B
A e2ϑz

.

z−(ν+1)e−ϑzϕ



−µ



−1

zµ−
2Aν+B

A e−2ϑz



µ−1

, (24)

where ν, ϑ and µ are in the form:

ν =
A−B ±


(A−B)2 − 4AF
2A

, ϑ = ±i

D

A
, (25)

and,

µ =
(2Aν +B)ϑ+ E

2Aϑ
. (26)

Moreover,
Az2χ2 +Bzχ1 + (Dz2 + Ez + F )χ = 0, (27)

(A,D = 0, z ∈ C\{0}, χ = χ(z)),

has the particular solution in the form:

χ = αzνeϑz

zµ−

2Aν+B
A e−2ϑz



µ−1
(28)

where ν and ϑ are given by Equ. (25), and µ is given by (26) and, α is an
arbitrary constant [10].

Theorem 3.2. According to the expression of Theorem 3.1, radial Schrödinger
equation in Equ. (20) has the particular solution in the form:

R(r) = αrνeϑr

rµ−2νe−2ϑr



µ−1
, (29)

where

ν =
1±

√
1 + 4τ
2

, ϑ = ±

λ2 + L,

and,

µ = ν +
K

2ϑ
.

Theorem 3.3. According to the expression of Theorem 3.1, radial Schr.....
dinger equation in Equ. (21) has the particular solution in the form:
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R(r) = αrνeϑr

rµ−2νe−2ϑr



µ−1
, (30)

where

ν =
1±

√
1 + 4τ
2

, ϑ = ±λ,

and,

µ = ν +
K− L

2ϑ
.

Theorem 3.4. According to the expression of Theorem 3.1, radial Schrödinger
equation in Equ. (22) has the particular solution in the form:

R(r) = αrνeϑr

rµ−2νe−2ϑr



µ−1
, (31)

where

ν =
1±


1 + 4(L+ τ)
2

, ϑ = ±λ,

and,

µ = ν +
K

2ϑ
.

Theorem 3.5. Let | (rµ−2ν)k |< ∞ and | −12ϑr |< 1 (r = 0, k ∈ Z+∪{0}). The
solution in the form:

R(r) = αrνeϑr

rµ−2νe−2ϑr



µ−1
,

is written as
R(r) = rµ−νe−ϑr2F0


1− µ, 2ν − µ;

−1
2ϑr


,

where 2F0 is the Gauss hypergeometric function.

Proof. By means of Equ. (5), we have

R(r) = αrνeϑr
∞

k=0

Γ(µ)
Γ(µ− k)k!

(rµ−2ν)k(e−2ϑr)µ−1−k. (32)

By using (7), (8) and (9), we rewrite Equ. (32) as follows:

R(r) = αrµ−νe−ϑr(2ϑe−iπ)µ−1

×
∞

k=0

Γ(k + 1− µ)
Γ(1− µ)

Γ(k + 2ν − µ)
Γ(2ν − µ)

1
k!

 −1
2ϑr

k
.
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Then,

R(r) = rµ−νe−ϑr
∞

k=0

(1− µ)k(2ν − µ)k
1
k!

 −1
2ϑr

k
.

where 1/α = (2ϑe−iπ)µ−1.
Finally, we obtain

R(r) = rµ−νe−ϑr2F0


1− µ, 2ν − µ;

−1
2ϑr


. 

Conclusion

In this study, we used fractional calculus theorems for the radial Schrödinger
equation given by the potential V (r) = H/r2 −K/r + Lrκ. And, we obtained
the hypergeometric forms of the fractional solutions.
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