Journal of Mathematical Extension
Vol. 12, No. 2, (2018), 15-32

ISSN: 1735-8299
URL: http://www.ijmex.com

Numerical Solution of Lane-Emden Type
Equation by Using Hybrid Third Kind
Chebyshev Polynomials and

Block-Pulse Functions Operational
Matrix of Differentiation

R. Jafari
Karaj Branch, Islamic Azad University

R. Ezzati*
Karaj Branch, Islamic Azad University

K. Maleknejad
Karaj Branch, Islamic Azad University

Abstract. In this paper, first, a numerical method is presented for
solving generalized linear and nonlinear Lane-Emden type equations. The
operational matrix of derivative is obtained by introducing hybrid third
kind Chebyshev polynomials and Block-pulse functions. This matrix
with the tau method is then utilized to transform the differential equa-
tion into a system of algebraic equations. Finally, the convergence analy-
sis is investigated and the efficiency of the proposed method is indicated
by some numerical examples.

AMS Subject Classification: 39B42; 35M33

Keywords and Phrases: Hybrid functions, chebyshev polynomials,
block-pulse functions, operational matrix of derivative, lane-emden type
equations

Received: April 2017 ; Accepted: October 2017
*Corresponding author

15



16 R. JAFARI, R. EZZATI AND K. MALEKNEJAD

1. Introduction

In recent years, the studies of singular initial value problems for second order
ordinary differential equations have attracted the attention of many mathe-
maticians and physicists. One of the equations describing this type is the Lane-
Emden type equation which is formulated as:

v+ Sy @)+ flay) =g@), 0<a<l a>0, (1)

Subject to the initial conditions

y(0)=a, y'(0)=0, (2)

where z, a are constants, f(z,y) is a nonlinear function of « and y, and g(z) is an
analytical function. Equation (1) was named after the astrophysicists Jonathan
H. Lane and Robert Emden (1870), as it was first studied by them. Equation (1)
was used to model several phenomena in mathematical physics and astrophysics
such as the theory of stellar structure, the thermal behavior of a spherical cloud
of gas, isothermal gas sphere, and theory of thermionic currents [1,2]. Due to
the multiple applicability of Lane-Emden equation, many researchers focused
their attention to give good approximate solution to these equations and many
methods were proposed. Horedt [3] presented a method based on Runge-Kutta
type. Solutions based on Adomian decomposition method presented in [4,5]
and the difficulty of singular point overcame by an alternative Adomian de-
composition method designed by Wazwaz. Dehghan and Shakeri [6] presented
the variational iteration method to solve Lane-Emden type equation. In [7,8]
the authors used Legendre and Bernstein operational matrix of differentiation
for solving Lane-Emden type equation. Balaji in [9] a new Bernoulli wavelet
operational matrix of derivative method for the solution of nonlinear singular
Lane-Emden type equations arising in astrophysics. Maleknejad and Hashem-
izadeh’s [10] used numerical method for solving Lane-Emden type equation
arising in astrophysics.

In this paper, a new numerical method for solving homogeneous and non-
homogeneous Lane-Emden type equation is presented. The method is based
on combination of third kind Chebyshev polynomials and Block-pulse func-
tions called the hybrid of third kind Chebyshev polynomials and Block-pulse
functions (HTKCPBPF).

The paper is organized as follows: In section 2, we review briefly about Block-
pulse functions and third kind Chebyshev polynomials and hybrid of them. Sec-
tion 3 is devoted to function approximation. In Sections 4, we construct the
operational matrices of derivative based on the (HTKCPBPF). Convergence
analysis of the proposed method is done in Section 5. In Section 6 and 7, we
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show the validity and efficiency of the proposed method, we present some nu-
merical examples. Finally, Section 8 concludes the paper.

2. Function and Hybrid Function

2.1 Block-pulse functions

A set of Block-pulse functions b;(x),i = 1,2,..., N, on the interval [0,1) are
defined as [12]:

- ,
1, N Sr<y

0, otherwise.

These functions satisfy in the following properties:
i- Disjointness
bz(w)v fOT =7,

0, for i#j.
ii- Orthogonality

1
1

where 4,5 =1,2,...,N, and §;; is the Kronecker delta,
iii- Completeness
for every f € L?[0,1) when m approach to the infinity, parsevals identity hold:

/ P)dz = S (2 bi(@)),
0 0

where f; = Nfol f(@)bi(z)d.

2.2 Third kind of Chebyshev polynomials

The third kind of Chebyshev polynomial V,,(z) is a polynomial of degree n in
x defined by [13] :
cos(n + 1)6
Vn(l') = 1 2 9
cos(3)0

where x = cos 6. clearly from (2.2), fundamental recurrence relation as follows:

V() =22V,_1(x) — Vaa(z), n=2,3, ..,
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where
Vo(z) =1, Vi(z)=2x-—1,

These polynomials are orthogonal on [—1, 1] with respect to the weight function

w(z) = ,/1EL, that is
1
/ Vi(2)Vj(z)w(x)dx = 7d;;.
-1

2.3 Hybrid functions

Forn=1,...,N and m =0,....,M — 1, the HTKCPBPF are defined as follows
[11]:
\/ 2Vm(2Nz —2n+1), 2t <ao< i,
Pnm(T) =
0, otherwise,

with the following weight function

wp(z) =w(2Nx —2n+1).

3. Function Approximation

A function f(z) € L?[0,1) may be expanded as:

flz) = Z Z CrmPrm (T), (3)

n=1m=0

where -
f xz ) nm x N
e = L@@ NT T @) f(d. (4)
(@rm (@), Prm () T Jo
In (4), (.,.)z2[0,1) denotes the inner product in L2[0,1), with weight function
wy,(z). If the infinite series in (3) is truncated, then equation (3) can be written

as:

N M-1
fla) ~ Z Z Cnm@nm(z) = CT (),
n=1m=0

where C and ¢(x) are NM x 1 matrices given by:

T
C= [61070117 C12, -+, C1,M —1, C20, '-'7CN,]V[71]

)

o(x) = [pr0(2), 011(2), ... p1,m-1(2), P20 ()., o111 ()] (5)
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The differentiation of vector ¢(x) can be obtained by:

dp(z)

pra Dy(z).

We derive the matrix D in the following section for some particular values of
N and M.

4. Operational Matrix of Derivative

In this section, we figure out the precise derivative of the HTKCPBPF with
N =2 and M = 3. In this case, the six basis functions are given by:
¢1=p10(x) =1,
P2 = pu1(z) =8z — 3,
3 = @1a(x) = 642 — 40z + 5, (6)

for t € [0, %), and

p1 = pa0(z) =1,
@21(1}) = 8z 7
e = wao(x) = 64z% — 104z + 41, (7)
for t € [3,1). Let pg(t) = (¢10(t) @11(t) ©12(t) @20(t) @a1(t) 22(t)). By

differentiation (6), (7) from 0 to t, and representing them in the matrix form,
we obtain

dp1

—_— = O

dx ’

dpa

dr ©10,

d

aps 128z — 40 = 16011 + 8¢10,

dx

dpy

—_— = O

dx ’

dps

dr ©20,

d

% = 128z — 104 = 1621 + 8¢20.
X

Thus, we have
de(x)
dx

= DGXG@(m)'
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Where

Dgye =2

O OO O
OO O oo
OO O O oo
=k O O OO
oo oo oo
OO OO OO

The matrix Dgyg can be written as

where

dp(x)
=D
T (@),
where () is given in (5) and D is a NM x NM matrix given by

F 0 0 --- 0
0O F 0 --- 0

D=N|0 0O F - 0f
o 0o o - F

where F' = a(;;) is M x M matrices, whose the elements are given explicitly
by:
200+7-1), >4, (i+j)odd,

ai; =4 201 —j), i>7,(i+ j)even,

0, otherwise.

For example if M = 7 as follows:

[0 0 0 0 0 0 O

4 0 0 0 0 0 0

4 8 0 0 0 0 0
F=|[8 4 12 0 0 0 0 ;

8 12 4 16 0 0 0

12 8 16 4 20 0 0

12 16 8 20 4 24 0

L 477
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Using the above procedure, the operational matrix of nth derivative can be
derived as:
d"p(x)
dz™

= D"p(x). (®)

5. Convergence Analysis

The following theorem gives the convergence and accuracy estimation of HTKCPBPF.

Theorem 5.1. Let f(x) be a second-order derivative square-integrable function
defined on [0, 1) with bounded second-order derivative, say | f”(z)| < A for some
constant A , then

(7) f(z) can be expanded as an infinite sum of the HTKCPBPF and the series
converges to f(x) uniformly, that is

.%‘) = Z Z Cnmwnm(t)

n=1m=0

where cpm = (f(7), Pnm(2)) 12 [0,1)-
(i)

A2 o 0o
ﬂfn]V]\L Z Zn5 _1

n=N+1m=M
where 5f,n,M - [fol |f(.1‘) - Zfzvzl Z’r]\r/L{;(} Cnm(pnm(aj)PWn(x)dm] .
Proof. To prove (i), we have:
N? !
(Yewn = (12) am@N 12100) = - | wnlahoun (o)
0

N2

o /N f(x)\/gvm@]vx —2n+ 1)w(2Nz — 2n + 1)dz.

m

[

Let t = (2Nz — 2n + 1) then dt = 2Ndz. Clearly, we have

Cnm:N[/ftmn W ()\/Tdt

By letting ¢t = cosf and the definition of the HTKCPBPF | it follows that
N [2 (T cosf+2n—1
Cnm = %“N/o f(T)(cos mb + cos(m + 1)6)do

N [2 (T cos®+2n—1 T cosh+2n—1
%“ﬁ[/o f(T)cos m9+/0 f(T)cos(erl)Hd()].



22 R. JAFARI, R. EZZATI AND K. MALEKNEJAD

Using the integration by parts, we have

2 1.1 (™, cos0+2n—1_, . )
Cnm = \/;éhr[m/o ! (T)(sm mlsind)do—+

1 T, cos0+2n—1_, ) 21
— —_— 1 =4/ —=—]I I
p— 1/0 ( 5N )(sin(m + 1)0sind)do) N47r[ 1+ L], (9)
where
1 (™ , cosO+2n—1 )
n=[— [ ;T
1 [m/o I 5N )(sin mOsind)do,
and

1 T, cos0+2n—1 )
I = ' ' 1 :
2= 7 /0 1( 5N )(sin(m + 1)0sind)do

Now, we estimate [; and I, respectively. A simple computation shows that

1 (™, cos®+2n—1
L= — [ e ———— —16 - 1
1 2m/0 fi( N )[cos(m — 1)0 — cos(m + 1)6]d6

1 (", cos0+2n—1 L (", cos0+2n—1
Zm/o f( N )[cos(m —1)8d9 2m/0 f( N Jeos(m + 1)0]d9
=TI — L,

where

1 (™ , cosf+2n—1
I, = [%/O fﬂ(iQN Jeos(m — 1)0d0,

and

1 T cosf+2n—1
I10 = — f Qi — 1)6de6.
12 2m/0 T N )cos(m + 1)

By using the integration by parts, and for m > 1, we get

1 g cost +2n —1
i1 =—— f et P — 1)0sinb|do
U= 4mN(m — 1)/O Fi——§ " lsin(m = 1)fsinf]

1 T ,,co80 +2n—1
S Loy ar T - _9 _
SmN(m — 1) /0 I( o )[cos(m — 2)0df — cos mb]db,
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B 1 ,,c080 +2n—1 .
Iis = TNt 1) /0 F( 5N )[sin(m + 1)0sinb]d

__ [Tt _
= SN D) /0 f i )[cos mO — cos(m + 2)6]d6.
Thus, for m > 1, we conclude that

I - " ,,(6059 +2n — 1)[cos(m —2)0 —cos mb  cos mf — cos(m +2)6
"7 8mN J, 2N (m—1) (m+1)

|6,

and hence

9 €080 +2n — 1, cos(m —2)0 — cos mf  cos mf — cos(m + 2)0
LI = ‘8 N f )

- doJ?
IN (m—1) (m+1) 18]
|/ #1( cosf + 2n — 1)[cos(m 2)0 —cos ml cos mf) — cos(m+2)0]d€‘2
64m2N2 ON (m—1) (m+1) '
By the fact that |f”(z)| < A and Schwartz inequality , it follows that
1 T, c080 +2n—1
T 2 < " 2
| i 2N2|/ 7 I L pag
(m + 1)cos(m — 2)0 — 2mcos mb + (m — 1)cos(m + 2)0 ,
| — |“do
(m+1)(m —1)
TA?
< 1 2)0+2 1 9
SN — 12(m 7 1) / |(m + 1)cos(m — 2)8 + 2mcos m@ + (m — 1)cos(m + 2)6|*d6
TA?

 6AmINZ(m— 1 (m 1)

[/ (m +1)%cos*(m — 2)9d9+/ 4m20052m9d9+/ (m —1)%cos?(m + 2)6df)]
0 0 0
TA? T T m
_ 7 D24 a2 - o — 102
SN (m — (E(m 1l MY gAm g m =1
B A2 (3m? +1) m2A?
 64m2N2(m — 1)2(m + 1)2 ~ 4N2(m - 1)F

For m > 2, we obtain

A
Y[ —
2N (m — 1)2

In a similar way, we will have

TA

Ll < ——.
12| 2N(m —1)2
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Therefore, for m > 2, we conclude that

1 [2 1 [2 x4 A 1
| = =1 =l + D) |< —1/ = - G
lenml =l Y Flh+ Bl 7 N N(m—1)2 2\/§n§( —1)2 (10)

Note that f/(z) is bounded on [0,1) due to the fact that |f”(z)| < A, indeed,
by the Differential Mean Value Theorem and for any ¢ € (0,1), there exists
some v, € (0,z) such that

f'(@) = £10) = f"(7a)a,

So
|/ (@) < F(0)] + 4,

for x € (0,1). Thus f'(x) is bounded on [0, 1), say |f"(z)| < A for some constant
A. Hence, by (9), we have

21 4 cosl +2n — 1 1 (™ cosl +2n — 1
<. L p COSU = 247 — 1 = p COSU 1 2470 — 1
<ral[ e >|d9+2/0 TG V)

213 0039+2n 2 1 374 3A
— e — <
471'2/ 1£( 2N )\dQ\ Nir 2 4\@71% (11)
and

211 6059—|—2n 1 /7 cos +2n — 1
ensl <1/ = 4772/ i 7N)|d9+§/0 7R g

[2 2 2 1514 54
cosﬁ +2n — )|d0 om 5 (12)
47T 6 2N N 471' 6 12\[n2
Relations (2 ) (23) show that the series) | > ¢,y is absolutely con-
vergent. For = 0 and according to the deﬁmtlon of ¢no(z), the series

> Cn0%n0 ( ) is convergent. Therefore, the series} " | > 7° ) Crm@nm ()
converges to f(z) uniformly.

1

1 N M-
(i) Bross = [ 1S =30 3 compnl) P a)

/ i i YnmPnm (T wn( Y

n=N+1m=M

S S N ELY A X T

n=N+1m=M
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Let t = 2Nx — 2n + 1 then dt = 2ndx. Therefore

2 _ - - 2 1 ! 2 1+t
Brane= D D leaml’5 YOy T

n=N+1m=M

! [T+t
Va2t ——dt =
/;1 ’H’L() 1_t Tr?

where the last equality follows due to the orthogonality of ¢, (z). Together
with (10) we get

we have

oo o

A2 1
o< XY wmr

n=N+1m=M

6. Solution of Lane-Emden Type Equation

In this section, consider Lane-Emden equation given in (1). In order to use
(HTKCPBPF), we first approximate y(z), f(z,y) and g(x) as:

y(z) = CT (),
fla,y) = fz,CTop(2)),
9(z) = GTo(x).
By using (8), we have
y'(z) = CTDy(a),
y'(x) = CTD?*p(x).
With substituting in (1) we have
2
CTD*p(x) + —CTDy() + f(2, CTo(t) = GTop(w).
Also, the initial and boundary conditions from (2) yields
CTp(0) =a, CTDp(0)=b. (13)
The residual Ry (z) for (1) can be written as
2
Ry(z) = CTD*p(x) + ~C" Dp() + f(w, CTo(t) = GTp(x).

As in a typical tau method, we generate NM — 1 equation by applying

1
(Rn(x), pi(x)) = /0 w(z)Ry(x)pi(zr)de =0, 1=0,1,.., NM —1. (14)

Equation (30) and (32) generate a set of NM +1 linear or nonlinear equations.
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7. Numerical Examples

In this section, linear and nonlinear Lane-Emden type equations have been
solved using the proposed method.

Example 7.1. At first we consider the equation
2
y'(@) + —y'(2) +y"(2) =0, 0<z<1, y(0)=1,4(0)=0, (15)

where n is a constant. Substituting n = 0,1 and 5 into (33) leads to the exact
solution

y@)=1-"5, ) =" y@) =0+ )

respectively.
1) For n =0, f(z,y) = y°(t) = 1 and g(x) = 0, we apply the method that was
explained in Section 6 for N = 1, M = 3, thus assume that

vo()
p1(z)
p2(z)
= copo(x) + crp1(x) + caa ().

y(@) =Co"(x)=(co e c)

Our aim is to determine the unknown coefficients ¢y, c; and co by using Tau
method. Also the operational matrix of third kind Chebyshev polynomials and
Block-pulse functions and its square is as follows:

0
0

000 0 0
D=4 0 0|, D?>= 00
4 8 0 32 0 0

By using (32) we have

1
<mmew:Aw®mw%mmza

where
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Ra(z) = wyy () + 2y5(2) + 2,

=z(c CQ)D2T$)+2 ¢ Dgp() x,
0 0 <p0(x)
:x( co €1 62) O 0 0 p1(x) |+
32 00 pa(z)
0 00 wo(x)
2( co €1 CQ) 4 0 0 p1(x)
4 8 0 pa(x)

= 8\/501 — 40\[2@ + 96\[62.23 + .

Therefore

1
14 (22— 1) 3
8v/2¢1 —40V2¢5+96V 2coz+2) V2 dx = +4c¢1+16¢y = 0.
| 6V2ei—a0Ver 06V Besa-r) V2 [ TGS = e 46y

(16)
By applying the initial conditions we have
4v/2¢; — 20V/2¢5 = 0
V2¢o — 3V2¢; +5V2¢y = 1. (17)
Solving(16) — (17) yields
43 5 1
o= ——, Cl = ———, Cyp = ———=.
CTusv2 T 6v2 T 96v2
Thus
y(@) = copo(@) + c1p1(x) + capa(a), (18)
43 5 1 V2 z?
:< 82 96v2  96v2 ) V2(dz - 3) =l-%
V2(1622 — 20z + 5)
(19)

which is the exact solution.

2) For n =1, we solve (15) by the method discussed in this paper with N =1
and M = 6, we have

co = 0.636292, c¢; = —0.0349386, co = —0.00656114,
c3 = 0.00019763, ¢4 = 0.0000203165, c5 = —4.44649 x 1077,
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and consequently
y(z) = CTp(x) = 1-0.16657822—0.00043292923+0.009126142* —0.000643921t°.

Table (1) shows some values of the solutions and absolute errors at some z,
and plot of the exact and approximate solutions are shown in Figure (1).

3) For n = 5, we solve (15) by the method discussed in this paper with N =1
and M = 4, we have

co = 0.6448062055, ¢; = —0.0290922, o = —0.00417201608, 3 = 0.00058801185,

and consequently
y(xz) = CTp(x) =1 —2.77556 x 10~ 17z — 0.187538z2 + 0.0532208z>,

Table (2) shows some values of the solutions and absolute errors at some z,
and plot of the exact and approximate solutions are shown in Figure (2).

Table 1: Estimated and exact values of Example 7.1 for n =1

x | Exact solution | Hybrid function | Absolute error

0.0 1.00000 1.00000 0.00000
0.1 0.998334 0.998335 0.000001
0.2 0.993347 0.993348 0.000001
0.3 0.985067 0.985069 0.000002
0.4 0.973546 0.973547 0.000001
0.5 0.958851 0.958852 0.000001
0.6 0.941071 0.941071 0.000000
0.7 0.920311 0.920311 0.000000
0.8 0.896695 0.896696 0.000001
0.9 0.870363 0.870364 0.000001

Table 2: Estimated and exact values of Example 7.1 for n =5

x | Exact solution | Hybrid function | Absolute error

0.0 1.0000000000 1.0000000000 0.000000000
0.1 0.9983374884 0.9988937246 0.000159650
0.2 0.9933992679 0.9955756673 0.000475033
0.3 0.9853292781 0.9900455719 0.000770762
0.4 0.9743547036 0.9823034383 0.000954699
0.5 0.9607689228 0.9723492664 0.001000900
0.6 0.9449111826 0.9601830564 0.000929277
0.7 0.9271455411 0.9458048082 0.000784575
0.8 0.9078412992 0.9292145218 0.000616766
0.9 0.8873556093 0.9104121973 0.000464579

1

0.8660254038

0.8893978346

0.000342920
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Table 3: Estimated and exact values of Example 7.4

t | Hybrid function | Exact solution | Absolute error
0.0 1.0000258671 1.0000000000 | 0.0000258672
0.1 0.9950313704 0.9950041652 | 0.0000272052
0.2 0.9800965668 0.9800665778 | 0.0000299890
0.3 0.9553665715 0.9553364891 | 0.0000300824
0.4 0.9210887371 0.9210609940 | 0.0000277432
0.5 0.8776073749 0.8775825618 | 0.0000248131
0.6 0.8253584756 0.8253356149 | 0.0000228607
0.7 0.7648644306 0.7648421872 | 0.0000222433
0.8 0.6967287530 0.6967067093 | 0.0000220437
0.9 0.6216307990 0.6216099682 | 0.0000208308

1 0.5403204885 0.5403023058 | 0.0000181827

Example 7.2. Consider the Lane-Emden equation give in [5] by

2
y'(2)+ =y (x) +y(z) =6+ 122+ 2% +2°, 0<x <1,
T

29

with the exact solution y = 22 + 23. We apply the method that was explained
in Section 6 for N = 1,M = 4. After performing some manipulations, the
components of the vector C' are given by

Co —

75 .
64\/5’ 1

A
642

11

641/2°

1
3 = ——,
YN

and consequently

y(z) = C’Tgo(m) =22 + 23,

which is the exact solution.
Example 7.3. Consider the following Lane-Emden equation:

8
y" (@) +=y (2)+ay(e) = ° -2 +442® =30z, 0 <z <1, y(0)=0,4(0)
T

with the exact solution y = z* — 3. We apply the method that was explained
in Section 6 for N = 1,M = 6. After performing some manipulations, the

components of the vector C' are given by

7 1 5 1
o= ——~—, C :0, C = —F, C3 = ———, Cp = ——F—,
07 T1a8y2t ! T 3v2 T a2 T 256V
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and consequently
y(z) = CTp(z) = a* —a?,

which is the exact solution.

1.00 [~ = e i
0951 N B
Out[39]= [ ~

0.90 - 4

0.85- B

0.0 0.2 0.4 0.6 0.8 1.0

Figure 1. The exact and Presented method solution of Examplel for n=1.

Example 7.4. Consider the following nonlinear Lane-Emden equation:

2
y'(@) + ~y'(2) =222 +3)y(2) =0, 0<z <1, y(0) =0,5'(0) =0,
which has the following exact solution:
2
y(z) =€ .

We apply the method that was explained in Section 6 for N = 1, M = 6. After
performing some manipulations, the components of the vector C' are given by:
c1 = 0.3834019355, ¢ = 0.1207976086,

cq = 0.005513677977,  ¢5 = 0.0009893435493,

co = 1.380375498,
c3 = 0.02368446796,

Table (3) shows some values of the solutions and absolute errors at some z.

1.00F i ,
0.95; ~ ]
0,96; > ]
0.94; \ ]

out[18]= r N

0.92F . g

Figure 2. The exact and Presented method solution of Examplel for n=5.

0.86

0.90

0.88

0.0

I
0.2

I I
0.4 0.6 0.8

1.0
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Conclusion

In this paper, we constructed operational matrix of derivative of hybrid the
third kind Chebyshev polynomials and Block-pulse functions. Also, we applied
these matrices to convert solving differential equations to solving linear al-
gebraic equations. As to validity and efficiency of the proposed method, we
presented some numerical examples.
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