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Abstract. In the literature, the Euler-Maruyama (EM) method for ap-
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1 Introduction
According to Ito’s stochastic integral theory, it is usually supposed that
continuous diffusion process {X(t) : t ≥ 0} with drifts µ and dispersion
coefficients σ can be considered as a solution of stochastic differential
equation {

dX(t) = µ(t,X(t)) dt+ σ(t,X(t)) dB(t),
X(0) = X0, t ≥ 0.

(1.1)

where {B(t) : t ≥ 0} stands for the Brownian motion.The theory of
these types of stochastic differential equations has been studied in a lot
of papers [4, 9, 22] and books [1, 2, 10, 15, 17].
Some researchers tried to extend this theory to some other classes such
as stable Lévy processes [1, 23, 24]. Zanzotto [23], in 1997, considered
the SDE

dX(t) = σ(X(t)) dSα(t), t ≥ 0. (1.2)
where σ is a Borel measurable function and Sα denotes an α stable
motion, 0 < α < 1 or 1 < α ≤ 2. He studied the problem of the
existence of nontrivial weak solutions. This result was extended later by
him [24] to the time-independent case, for strictly stable processes with
α ∈ (0, 2], and for X(0) with an arbitrary distribution on R

X(t) = X(0) +

∫
(0,t]

σ(X(s−)) dSα(s), t ≥ 0. (1.3)

Weak solutions were investigated and specially when α = 1, i.e. Cauchy
process, a sufficient existence condition was established. Kurenok [9]
considered the driftless and time dependent SDE

dX(t) = σ(t,X(t)) dSα(t), t ≥ 0. (1.4)

for X(0) = x0 ∈ R as well as Sα which is a symmetric α stable process,
1 < α ≤ 2. He studied the existence of non exploding solution of (1.4)
through the existence of solution of the equation:

dA(t) = |σ(t, Sα(A(t)))|α dt, t ≥ 0, (1.5)

in the class of time change process. In (1.5), Sα is distributed as Sα.
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He also proved that for any arbitrary initial value X(0) = x0 ∈ R,
there exists a solution of stochastic differential equation (1.4) if and only
if Mα ⊆ N , 1 < α ≤ 2, where

Mα =:
{
y :

∫
V (y)

|σ(x)|α L(dx) = ∞
}

where V (y) is any open neighborhood of y, and

N =: {y : σ(y) = 0}

and L(dx) is the Lebesgue measure on R+ × R.

Now let (Ω,F ,L, {Ft}) be a stochastic basis. The purpose of this
research is to approximate a real valued and {Ft} adapted diffusion
process {X(t) : t ≥ 0} obtained by α−stable stochastic measures with
given drift µ(., .) and dispersion coefficient σ(., .), which is the solution
of SDE: {

dX(t) = µ(t,X(t)) dt + σ(t,X(t)) dSα(t),
X(0) = X0, t ≥ 0.

(1.6)

It should be noted that since S2(t) =
√
2 B(t), the SDE (1.1) is a

special case of SDE (1.6). The stochastic equation described by (1.6) is
regarded as a special case of general SDE given by semimartingales, i.e.
equations {

X(t) = X(0) +
∫ t
0 f(X(s−)) dZ(s),

X(0) = X0, t ≥ 0.
(1.7)

where {Z(t)} stands for a given semimartingale process. The afore-
mentioned processes have been discussed in detail in [17, 19] and the
references therein.

In Section 2, we first provide some basic convergence and two theo-
rems concerning the existence and uniqueness of solution of (1.7), along
with convergence in probability of its numerical solution. Then, a brief
discussion on Lévy processes is brought and, as shown in the literature,
we point out that Lévy processes are semimartingale. Our next focus
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is on the family of α−stable processes as a member of Lévy processes
family.

Section 3 studies stochastic differential equations driven by α−stable
Lévy motion. Based on the discussion of section 2, we conclude that the
Euler-Maruyama numerical method converging in probability to the ex-
act solution of (1.6). The innovation in the present study is to make
this heuristic argument rigorous. This is accomplished by proving The-
orem 3.2.

Although the convergence in probability of Euler-Maruyama method
has already been claimed, it is fraught with ambiguities. Our method
proves it clearly and could be used for all subfamilies of semimartingales.

In Section 4 a simulation study and some classical examples are
provided to support the conclusion.

2 Semimartingales
In this section, some definitions and theorems concerning SDEs of semi-
martingales are presented.

Let (Ω,F,P) be a complete probability space and F = (Ft)0≤t≤∞ be
a filtration of sub σ fields of F . The random variable T : Ω → [0,∞]
is a stopping time if {ω : T (ω) ≤ t ∀t ≥ 0} ∈ Ft. A stochastic process
X(t) is called adapted if X(t) ∈ Ft for all t ≥ 0. It is càdlàg if its paths
are right continuous and have left limit. The class of all adapted and
càdlàg process is denoted by D. The stochastic processes H(t) are said
to be simple predictable if they admit the following form:

H(t) = H(0)1{0}(t) +

n−1∑
i=1

H(i)1(Ti,Ti+1](t). (2.1)

where 1A is indicator function and 0 ≤ T0 ≤ T1 ≤ · · · ≤ Tn < ∞ are
stopping times and H(i) ∈ L∞(FTi) where i = 0, 1, · · · , n. The class of
all simple predictable processes is denoted by S. A norm on S is

∥H∥u = sup
s≥0

∥Hs∥∞.

When S is equipped with the topology, it induced by ∥.∥u and is denoted
by Su. The class of almost surely finite valued stochastic processes
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X ∈ F with the topology induced by convergence in probability under
P is shown by L0. In other words:

L0 = L0(Ω,F ,P) = {X ∈ F : X is finite valued a.s.}.

Now, for H ∈ S with representation (2.1) and for stochastic process
X, we define

IX(H) = H(0)X(0) +

n−1∑
i=1

H(i)(X(Ti+1)−X(Ti)), (2.2)

Which is the stochastic integral of H with respect to X.
A càdlàg stochastic process X is called a total semimartingale if the

map IX : Su → L0 is continuous. The processes X is a semimartingale
if Xt is total semimartingale for all t ≥ 0, where for a process X and a
stopping time T , Xt stands for the process (X(t∧T ))t≥0. càdlàg locally
square integrable local martingales, local martingales with continuous
path and the Brownian motion are examples of semimartingales. An
adapted càdlàg process X is said to be decomposable if it can be decom-
posed as

X(t) = X(0) +M(t) +A(t) (2.3)
where, M(0) = A(0) = 0, M is locally square integrable martingale,
i.e., E(M2(Tn)1(Tn≥0)) < ∞, and A is càdlàg adapted with path of
finite variation on compact sets [17].

Theorem 2.1. A decomposable process is semimartingale.

Proof. See [17] for a proof. □
A sequence of stochastic process {Xn}∞n=1 converges uniformly on

compacts in probability, abbreviated as ucp, if (Xn −X)∗t tend to zero
in probability for all t, where

X∗
t = sup

0≤s≤t
|Xs|.

We say that the operator F : D → D is functional Lipschitz if for any
X,Y in D and any stopping time T , XT− = Y T− implies F (X)T− =
F (Y )T− and | F (X)t − F (Y )t |≤ k(t) ∥ X − Y ∥∗t a.s, for some finitely
increasing processes (k(t))t≥0. The following two theorems are specially
significant in this section. The proofs are given in [17, 19].
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Theorem 2.2. Let Z be a R valued vector of semimartingales with
Z(0) = 0, F be a matrix valued operator which is functional Lipschitz
and J is a R vector processes in D. Then the following SDE has a unique
solution in D.

X(t) = J(t) +

∫ t

0
F (X)s−dZ(s). (2.4)

Moreover, if J = (J(t))t≥0 is a semimartingale, then so is X = (X(t))t≥0.

It should be noted that a functional Lipschitz operator F will typi-
cally be of the following form

F (X) = f(t, w,Xs, s ≤ t).

Theorem 2.3. Suppose that Z, F and J satisfy the conditions of The-
orem 3.1. Define inductively the following SDE

X(n+1)(t) = J(t) +

∫ t

0
F (X(n))s dZ(s). (2.5)

with X(1) in D. Then X(n) converges in ucp to X, the solution of (2.4).

2.1 Lévy process
An adapted process X = {X(t)}t≥0 with X(0) = 0 a.s. is called a Lévy
process if:

i) it is independent increment of the past, i.e. X(t) −X(s) is inde-
pendent of Fs for all 0 ≤ s ≤ t < ∞.

ii) X(t)−X(s) is distributed as X(t− s) for all 0 ≤ s ≤ t < ∞.

iii) X(t) is continuous in probability, i.e. X(s) → X(t) in probability
as s → t.

It should be mentioned that X has a unique modification which is càdlàg
and also Lévy process [5, 17]. Poisson and Wiener processes are examples
of Lévy process. The following theorem shows how a Lévy process can
be decomposed. In comparison with Theorem 2.2, it is concluded that
the Lévy processes are semimartingale.
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Theorem 2.4 ([17]). Let X = (X(t))t≥0 be a Lévy processes. Then X
can be decomposed X(t) = Y (t)+Z(t) where Y and Z are Lévy processes,
Y is martingale with bounded jumps, E | Y (t) |p< ∞ for all p ≥ 1 and
Z has paths of finite variation on compacts.

It is possible to characterize the Lévy process by looking to its char-
acteristic function, known as Lévy-Khinchin formula
ΦX(t) =E(eiθX(t))

= exp
{
aitθ − 1

2
σ2θ2 + t

∫
R−{0}

(eiθx − 1− iθx1{|x|<1})ν(dx)
}

(2.6)
where, a ∈ R, σ ≥ 0 and 1A is indicator function of the Set A. The
Lévy measure ν must be in such a way that∫

R−{0}
min{x2, 1}ν(dx) < ∞.

A Lévy process has three components: drift, diffusion, and jump. The
Lévy-Khinchin formula with triple (a, σ2, ν) fully determines the pro-
cesses; therefore, one can see that a purely continuous Lévy process is
Brownian motion with drift.

2.2 α−stable process
The present study focuses on α−stable stochastic processes. A real
random variable X is said to have stable distribution whenever X1 and
X2 are independent random variables, having the same distribution as
X, then c1X1 + c2X2 has the same distribution as cX + d for some c, d
depending on c1 and c2. Moreover, there exists a positive real constant
α, called the index of stability, such that cα = cα1 + cα2 . X is strictly
stable if d = 0 for all c1 and c2. The characteristic function of the stable
random variable X is

φ(θ) =E(eiθX)

=


exp{−σα|θ|α{1− iβ(sign θ) tan(πα2 )}+ iµθ}, α ̸= 1,

exp{−σ|θ|{1 + iβ 2
π (sign θ) ln |θ|}+ iµθ}, α = 1.

(2.7)
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where, α ∈ (0, 2], β ∈ [−1, 1], σ ∈ [0,∞) and µ ∈ R are called indices,
skewness, scale and shift parameter, respectively, then X ∼ Sα(σ, β, µ).
X is called a symmetric α−stable random variable if β = µ = 0.
In other words, if X has the form Sα(σ, 0, 0), in that case we also write
X ∼ SαS. The probability densities of α stable random variables are
continuous but do not have closed forms except for α = 1

2 , α = 1, α = 2.
For more details refer to [14, 18].

A stochastic process {Xt : t ∈ T}, where T is an arbitrary set, is
stable if all its finite dimensional distributions

(X(t1), X(t2), . . . , X(tn)), t1, t2, . . . , tn ∈ T, n ≥ 1.

are stable for the same index. It is symmetric stable if all its finite
dimensional distributions are symmetric stable for the same index as
well [14, 18].

Definition 2.5. A stochastic process {X(t) : t ≥ 0} is called (standard)
α−stable lèvy motion if

1. X(0) = 0 a.s.;
2. {X(t) : t ≥ 0} has independent increment;
3. X(t)−X(s) ∼ Sα((t− s)

1
α , β, 0).

Regarding processes having independent increments without Brow-
nian component, that is, processes with the Laplace transform [7]:

E(e−uX(t)) = exp{btu+ t

∫
R\{0}

{1− ux1{|x|<1} − e−ux}ν(dx)} (2.8)

where ν and b present Lévy measure and the drift for α−stable processes,
respectively, and ν(dx) = c dx

|x|α+1 for some constant c. Taking u = −iθ in
(2.8), we get to (2.6). It reconfirms that the α−stable motions are Lévy
processes.

3 SDE’s driven by α−stable Lévy motion
In this section, an SDE involving stochastic integrals with α−stable
integrators are defined by α stable Lévy motion,

dX(t) = µ(t,X(t)) dt + σ(t,X(t)) dSα(t), X(0) = X0, (3.1)
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which the integral form

X(t) = X0 +

∫ t

0
µ(s,X(s−)) ds+

∫ t

0
σ(s,X(s−)) dSα(s), (3.2)

is taken into consideration, where {Sα(t)}t≥0 is a Sα(t
1
α , β, 0) Lévy mo-

tion. It includes SDEs with Brownian processes integrator: S2(t) =√
2 B(t), β = 0. According to the discussions of Sections 2.1 and 2.2 the

integral equation (3.2) is a special case of the equation (2.4). To verify
this claim [19], let

Zt = [t, Sα(t)]
′, J(t) = X0, F (X)t− = [µ(t,X(t−)), σ(t,X(t−))].

Therefore, we can state Theorem 3.1 as follows:

Theorem 3.1. The integral equation (3.2) has a unique solution, pro-
vided the functions µ and σ satisfy the Lipchitz condition (note that a
Lipschitz function is also functional Lipschitz).

Having the above suitable choices of J(t), F (t), Z(t) in (2.5) and
(3.2), the following equation is obtained

X(n+1)(t) = X0 +

∫ t

0

[
µ(s,X(n)(s)), σ(s,X(n)(s))

]
d

[
s

Sα(s)

]
(3.3)

which is equivalence to

X(n+1)(t) = X0 +

∫ t

0
µ(s,X(n)(s−)) ds+

∫ t

0
σ(s,X(n)(s−)) dSα(s).

(3.4)
In which, ucp to X(t), the solution of (3.2). On the other hand, for the
simple functions,

µ̂(s,X(s−)) =

k−1∑
i=0

µ(ti, X(ti))1[ti,ti+1)(s) (3.5)

σ̂(s,X(s−)) =

k−1∑
i=0

σ(ti, X(ti))1[ti,ti+1)(s) (3.6)
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approximate µ(s,X(s)) and σ(s,X(s)) respectively, for each s ∈ [0, T ].
Now, by helping Theorem 16 and its corollary and argument given on
page 276 of [17], we obtain that the following integral equation

X̂(t) = X0 +

∫ t

0
µ̂(s,X(s−)) ds+

∫ t

0
σ̂(s,X(s−)) dSα(s) (3.7)

X̂(t) = X0+

∫ t

0

k−1∑
i=0

µ(ti, X(ti))1[ti,ti+1](s)ds

+

∫ t

0

k−1∑
i=0

σ(ti, X(ti))1[ti,ti+1](s)dSα(s) (3.8)

i.e. converges in probability to X(t), the exact solution of (3.2).

In (3.7), the time intervals [0, T ] are fixed by schemes based on
equidistant time discretization points tn = nh, n = 0, 1, . . . , N with
step size h =

T

N
, N = 1, 2, . . . Then

X(t1) = X(t0)+µ(t0, X(t0))(t1 − t0)

+σ(t0, X(t0)) (Sα(t1)− Sα(t0)) (3.9)

Inductively for t = tn+1, i = 0, 1, . . . , N − 1 in (3.9) we get to

X(tn+1) = X(tn)+µ(tn, X(tn))(tn+1 − tn)

+σ(tn, X(tn)) (Sα(tn+1)− Sα(tn)) (3.10)

or equivalently

X(tn+1) = X(tn)+µ(tn, X(tn))∆tn

+σ(tn, X(tn))∆Sα(tn), n = 0, 1, ..., N − 1 (3.11)

The above argument proves the following theorem.

Theorem 3.2. The family
{
X(tn) : n = 0, 1, ..., N

}
given by (3.11)

with drift µ(t, x) and cofficient function σ(t, x) define on [0, T ]×R under
Lipschitz condition converges in probability to the exact solution of (3.2)
on [0, T ] as h tends to zero.
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4 Simulation of α−stable stochastic processes
and diffusions driven by α−stable processes

One of the main goals in this study is to derive some computational
methods of simulating α stable processes and numerical solution of SDEs
of α stable processes. To obtain an SαS random variable with unit
dispersion, α ∈ (0, 2], the method given in [7, 14] is followed. Let U be
a random variable distributed uniformly on (−π

2 ,
π
2 ) and independent of

E, which is distributed exponentially with mean 1, then S is distributed
as Sα(1, 0, 0).

S =


sin(αU)

(cosU)
1
α

[
cos((1− α)U)

E

]1− α

α , α ̸= 1,

tan(U), α = 1.

(4.1)

Also, for skew parameter β ∈ [−1, 1], define θ =
arctan(β tan πα

2 )

α
,

when α ̸= 1 then S has Sα(1, β, 0) distribution. It is noted that S′ =

σ
1
αS + µ is distributed as Sα(σ, β, µ).

S =



sin(α(θ + U))

(cos(αθ) cos(U))
1
α

[
cos(αθ+(1−α)U)

E

] 1−α
α

, α ̸= 1,

2

π

(π
2
+ βU) tan(U)− β log(

π
2E cos(U)
π

2
+ βU

)

 , α = 1.

(4.2)

In order to approximate the process X(t), t ∈ [0, T ], the solution of
Equation (3.1), we partition [0, T ] as h =

T

N
, tn = nh, n = 0, 1, · · · , N .

The stochastic stable measure Sα([tn−1, tn))
d
= Sα(tn) − Sα(tn−1) ∼

Sα(h, β, 0) and X(0) = X0 ∼ Sα(0.001, β, 0) are constructed by (4.1) and
(4.2), respectively, and Equation (3.11) is used to evaluate X(tn+1), n =
0, 1, · · · , N−1. The order of convergence of this method which is known
as Euler-Maruyama method is not obtained yet in the α stable case.
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4.1 Result and conclusion
Concerning convergence in probability of semimartingle, Theorems 2.2
and 2.3 have been stated. By using Theorem 2.4, it has been poven that
α−stable Lévy motion are semimartingle which is discussed in subsection
2.2. Moreover, it has been proven that Euler-Maruyama equation is
special case of equation (2.5) and it convergence to X(t) in probability.
This means that SDE driven by α−stable Lévy motions have removed
the ambiguities.

4.2 Examples
Denoting X̃(k)(tn), the EM approximation of X(k)(tn), the exact

solution at step point tn in the kth simulation of all 1000 simulations,
we define the difference mean of exact and estimated solution at 0 =
t0 < t1 < t2 < · · · < tN = T and the difference mean at T by Equations
(4.3) and (4.4), respectively.

E1 =
1

1000

1000∑
k=1

N∑
n=0

|X(k)(tn)− X̃(k)(tn)| (4.3)

E2 =
1

1000

1000∑
k=1

|X(k)(T )− X̃(k)(T )| (4.4)

In Examples 1,2 and 3, the exact solutions are known so we obtain E1

and E2. We consider “Logistic Model of Population Growth” in Example
4. The exact solution is not yet known and the averages of 1000 EM
simulations at t0, t1, · · · , tN are plotted for different values of α and β.

Example 4.1. [3, page 46][Geometric α−stable process] Consider a
stochastic differential equation driven by an α stable process{

dX(t) = λX(t) dt+ µX(t) dSα(t),
X(0) ∈ R, t ∈ [0, 2].

(4.5)

The following equation is the exact solution of (4.5)

X(t) = X(0) exp{(λ− 1

2
µ2)t+ µSα(t)}. (4.6)
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Table 4.1 shows the mean of absolute errors, i.e. E1 and E2, for equation
(4.5) when β = −0.7, λ = 0.25, and µ = 0.1 and for different values of α
at two different distances of h = 10−2 and h = 10−3.

Table 4.1: Mean of absolute error for Equation (4.5), β = −0.7, λ =
0.25, µ = 0.01

h
α = 0.5 α = 1 α = 1.5 α = 2

E1 E2 E1 E2 E1 E2 E1 E2

10−2 1.6 10−6 3.9 10−6 1.7 10−5 4.0 10−5 1.3 10−4 3.1 10−4 3.4 10−6 8.1 10−6

10−3 3.2 10−7 7.4 10−7 1.5 10−6 3.5 10−6 2.2 10−5 5.0 10−5 2.6 10−7 6.1 10−7

Table 4.2 shows the mean of absolute error, i.e. E1 and E2 for
equation (4.5) when β = 0, λ = 0.25, and µ = 0.1 and for different values
of α at two different distances of of h = 10−2 and h = 10−3.

Table 4.2: Mean of absolute error for Equation (4.5), β = 0, λ =
0.25, µ = 0.1

h
α = 0.5 α = 1 α = 1.5 α = 2

E1 E2 E1 E2 E1 E2 E1 E2

10−2 2.1 10−6 4.9 10−6 1.1 10−5 2.5 10−5 7.4 10−4 1.3 10−3 4.3 10−5 1.0 10−4

10−3 1.5 10−7 8.6 10−7 2.9 10−6 6.8 10−6 2.0 10−4 4.6 10−4 4.8 10−5 1.1 10−4

Figure 4.1 presents the mean of 1000 discredited α−stable paths for
equations (4.6) and Euler-Maruyama method when λ = 0.25, µ = 0.1
and h = 10−3.

Example 4.2. [7, page 109][Ornstein-Uhlenbeck process]
Let’s study the following SDE{

dX(t) = −λX(t) dt+ dSα(t),
X(0) ∈ R, λ > 0, t ∈ [0, 2].

(4.7)

The following α−stable stochastic process is explicit solution of (4.7) [7,
page 109]

X(t) = X(0) e−λt +

∫ t

0
e−λ(t−s) dSα(s). (4.8)
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Figure 4.1: Mean of 1000 discredited α−stable paths for Equation
(4.6) denoted with red line and Euler-Maruyama method denoted by
blue line for λ = 0.25, µ = 0.01 and h = 10−3.

The stochastic integral in (4.8) is approximated by∫ ti

0
e−λ(t−s) dSα(s) ≈

∑
j

e−λ(ti−sj) ∆Sα(sj).

Similar to Example 4.1, Figure 4.2 compares the exact solution with the
Euler-Maruyama estimated solution for 1000 α−stable paths.

Table 4.3 shows the mean of absolute errors, i.e. E1 and E2 for
equation (4.7) when β = 0, λ = 2, and for different values of α at three
different distances of h = 10−1, h = 10−2, and h = 10−3.

Table 4.3: Mean of absolute error for Equation (4.7), β = 0, λ = 2.

h
α = 0.5 α = 1 α = 1.5 α = 2

E1 E2 E1 E2 E1 E2 E1 E2

10−1 3.3 10−2 4.7 10−2 1.4 10−1 2.3 10−1 2.2 10−2 4.3 10−2 5.2 10−2 8.2 10−2

10−2 1.0 10−3 1.4 10−3 1.8 10−2 2.5 10−2 2.0 10−3 5.0 10−3 1.5 10−3 8.0 10−3

10−3 2.0 10−4 2.8 10−4 3.5 10−3 4.5 10−3 5.5 10−4 7.2 10−4 4.9 10−4 8.8 10−4
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Table 4.4 shows the mean of absolute errors, i.e. E1 and E2 for
equation (4.7) when β = 0.7, λ = 2, and for different values of α at
three different distances of h = 10−1, h = 10−2, and h = 10−3.

Table 4.4: Mean of absolute error for Equation (4.7), β = 0.7, λ = 2.

h
α = 0.5 α = 1 α = 1.5 α = 2

E1 E2 E1 E2 E1 E2 E1 E2

10−1 4.4 10−2 4.9 10−2 4.9 10−3 8.5 10−2 3.2 10−2 6.1 10−2 1.4 10−2 6.8 10−2

10−2 6.0 10−3 6.6 10−3 1.4 10−2 1.5 10−2 5.8 10−3 8.5 10−3 5.5 10−3 9.2 10−3

10−3 3.4 10−4 5.1 10−4 3.1 10−3 3.3 10−3 2.7 10−3 2.9 10−3 5.7 10−4 9.4 10−4

Figure 4.2 presents the mean of 1000 discredited α−stable paths for
equation (4.7) and Euler-Maruyama method when λ = 2, and h = 10−3.
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Figure 4.2: Mean of 1000 discredited α−stable paths for Equation
(4.8) denoted by red line and Euler-Maruyama method denoted by blue
line for λ = 2 and h = 10−3.

Example 4.3 (Resisitive - inductive electrical circuit). Consider the
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following α−stable SDE{
dX(t) = (4 sin(t)−X(t)) dt+ 1

L dSα(t),
X(0) = X0 ∈ R, L > 0, t ∈ [0, 2].

(4.9)

First, we prove that Equation (4.9) has exact solution, then similar
to previous examples, the exact and estimated solutions are compared.
Explicit solution can be obtained, as ordinary differential equations case,
by the variational of parameters technique. First, the solution following
homogeneous linear α−stable equation is obtained:{

dX0(t) = −X0(t) dt,
X0(0) = 1, t ≥ 0.

(4.10)

According to Example 4.1, the following equation is explicit form for
Equation (4.10)

X0(t) = e−t, t ≥ 0. (4.11)

Now, writing the solution of non-homogeneous Equation (4.9) as

X(t) = Y (t)X0(t) = e−tY (t),

the problem is determined by Y (t) = X−1
0 (t)X(t) = etX(t), which gives

dY (t) = d(etX(t)) = etX(t) dt+ et dX(t)

= et X(t) dt+ et ((4 sin(t)−X(t)) dt+
1

L
dSα(t))

= 4 et sin(t) dt+
1

L
etdSα(t)

therefore,

Y (t) = Y (0) + 4

∫ t

0
es sin(s) ds+

1

L

∫ t

0
es dSα(s)

= Y (0) + 2(1 + et sin(t)− et cos(t)) +
1

L

∫ t

0
es dSα(s)

hence, X(t), the solution of Equation (4.9), can be written by

X(t) = 2 (e−t + sin(t)− cos(t)) + e−t X(0) +

∫ t

0

1

L
es−t dSα(s). (4.12)
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We approximat the last part of (4.12) by∫ ti

0

1

L
es−t dSα(s) ≈

1

L

∑
j

esj−ti ∆Sα(sj).

Table 4.5 shows the mean of absolute errors, i.e. E1 and E2 for equa-
tion (4.9) when β = −0.7, L = 2, and for different values of α at three
different distances of h = 10−1, h = 10−2, and h = 10−3.

Table 4.5: Mean of absolute error for Equation (4.9), β = −0.7andL =
2.

h
α = 0.5 α = 1 α = 1.5 α = 2

E1 E2 E1 E2 E1 E2 E1 E2

10−1 3.0 10−2 8.3 10−2 3.1 10−2 4.6 10−2 3.3 10−2 3.7 10−2 2.8 10−2 6.0 10−2

10−2 4.3 10−2 5.3 10−2 5.8 10−3 9.6 10−3 2.6 10−3 4.2 10−3 3.1 10−3 4.3 10−3

10−3 3.0 10−3 3.3 10−3 2.6 10−3 2.7 10−3 2.2 10−3 2.2 10−3 2.7 10−4 5.9 10−4

Table 4.6 shows the mean of absolute errors, i.e. E1 and E2 for
equation (4.9) when β = 0.7, L = 2, and for different values of α at
three different distances of h = 10−1, h = 10−2, and h = 10−3.

Table 4.6: Mean of absolute error for Equation (4.9), β = 0.7andL = 2.

h
α = 0.5 α = 1 α = 1.5 α = 2

E1 E2 E1 E2 E1 E2 E1 E2

10−1 3.1 10−2 4.4 10−2 3.3 10−2 1.0 10−1 2.9 10−2 3.8 10−2 3.4 10−2 4.1 10−2

10−2 4.3 10−2 7.3 10−2 4.3 10−3 1.2 10−2 9.5 10−3 1.9 10−2 2.8 10−3 5.2 10−3

10−3 2.7 10−4 5.6 10−4 2.5 10−4 7.3 10−4 9.8 10−4 2, 0 10−3 2.9 10−4 4.6 10−4
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Figure 4.3 presents the mean of 1000 discredited α−stable paths for
equation (4.12) and Euler-Maruyama method when L = 2, and h = 10−3.
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Figure 4.3: Mean of 1000 discredited α−stable paths for Equation
(4.12) denoted by red line and Euler-Maruyama method denoted by
blue line for L = 2 and h = 10−3.

Example 4.4. (Logistic Model of Population Growth)
The logistic model to describe the growth of a population subject to a
fixed food supply with α−stable random effect is{

dX(t) = X(t) (K −X(t)) dt+ ak X(t) dSα(t).,
X(0) ∈ R, t ∈ [0, 2].

(4.13)

where K is the food supply in the population unit. To the best of our
knowledge, the exact solution has not been obtained yet. Therefore, just
the solutions are simulated in [0, 2].

Figure 4.4 presents the mean of 1000 discredited α−stable paths for
equation (4.13) and Euler-Maruyama method when L = 2, and h = 10−3.
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Figure 4.4: Mean of 1000 paths of Euler-Maruyama method for Equa-
tion (4.13) for K = 3, ak = 0.3 and h = 10−3.

5 Compare with other methods
Regarding comparison of the presented method in our article with other
methods, it should be mentioned that we have considered α ∈ (0, 2] while
some authors [11] have used α = 2 (Wiener process). Moreover, Example
4.1 for our article was applied to the method presented by Janicki et
al [6]. In this section we denot the NEu and Eu approximation, the
approximation of equation (4.5) by method (5.1) and the approximation
of equation (4.5) by method (3.11), respectively. The result indicated
that the E1 and E2 values obtained by their method where higher than
our presented method in this article.
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Table 5.1: Comparison of E2 error in methods (5.1) and (3.11).

h
α = 0.5 α = 1 α = 1.5 α = 2

NEu Eu NEu Eu NEu Eu NEu Eu

10−2 1.2 10−6 5.2 10−9 6.1 10−5 3.4 10−6 3.3 10−3 8.7 10−5 2.1 10−3 6.7 10−6

10−3 8.0 10−8 5.7 10−11 4.9 10−5 7.5 10−9 2.3 10−3 3.1 10−6 1.7 10−3 1.2 10−6

Table 5.2: Comparison of E2 error in methods (5.1) and (3.11).

h
α = 0.5 α = 1 α = 1.5 α = 2

NEu Eu NEu Eu NEu Eu NEu Eu

10−2 3.4 10−8 2.2 10−10 1.2 10−3 9.0 10−6 4.2 10−3 2.4 10−5 4.1 10−4 1.3 10−6

10−3 3.3 10−7 1.6 10−11 3.1 10−4 1.8 10−7 4.8 10−3 2.2 10−6 3.8 10−3 2.9 10−6

References
[1] Applebaum. D, Lévy Processes and Stochastic Calculus, Cam-

bridge University Press. (2009).

[2] Baxendale. P.H, Stochastic Differential Equations: Theory and
Applications, World Scientific Publishing Company. (2007).

[3] Guangtao. Ge, Numerical Solution of Stochastic Differential
Equations with Respect to Brownian Motion or α−Stable Lévy
Motion. Master’s thesis, Tufts University, USA, 2009.

[4] Highamï. D.J, An algorithmic introduction to numerical simula-
tion of stochastic differential equations, SIAM Rev. 43, 3 (2001)
525-546.

[5] Janicki. A, Computer simulation of diffusions driven by α−stable
Lévy motion, Math. Comput. Simulation. 38 (1995) 97-101.

[6] Janicki. A, Michna. Z, Weron. A, Approximation of Stochastic
Differential Equations Driven by α−Stable Lévy Motion, Applica-
tiones Mathematicae. 24, 2 (1996), pp. 149-168.

[7] Janicki. A, Weron. A, Simulation and Chaotic Behavior of
Alpha-stable Stochastic Processes, Springer. (2003).



CONVERGENCE OF EULER-MARUYAMA METHOD FOR... 53

[8] Kloeden. P.E, Platen. E, Numerical Solution of Stochastic Dif-
ferential Equations, Springer-Verlag, Berlin, 1992.

[9] Kurenok. V.P, On driftless one-dimensional SDEs with respect
to stable Lévy processes, Lithuanian Math. J. 47, 4 (2007) 423-435.

[10] Mao. X, Stochastic Differential Equations and Applications, Hor-
wood Publishing Limited Company. (2007).

[11] Mao. X, Szpruch, L, Strong convergence and stability of implicit
numerical methods for stochastic differential equations with non-
globally lipschitz continuous coefficients, ournal of Computational
and Applied Mathematics. 238:14–28, 2013.

[12] Milstein. G.N, Platen. E, Schurz. H., Balanced implicit meth-
ods for stiff stochastic system, SIAM J. Numer. Anal. 35, 3 (1998)
1010-1019.

[13] Milstein. G.N, Numerical Integration of Stochastic Differential
Equations, first ed, Springer (1994).

[14] Nolan. J.P, Stable Distributions - Models for Heavy Tailed Data,
Boston: Birkhäuser. Unfinished manuscript, In progress, Chapter 1
online at academic2.american.edu/∼jpnolan. (2012).

[15] Øksendal. B, Stochastic Differential Equations: An Introduction
with Applications, sixth edition, Springer. (2003).

[16] Platen. E, Liberati. N.B, Numerical Solution of Stochastic Dif-
ferential Equations with Jumps in Finance, Springer. (2010).

[17] Protter. P.E, Stochastic Integration and Differential Equations,
Springer. (2003).

[18] Samorodnitsky. G, Taqqu. M, Stable Non-Gaussian Random
Processes: Stochastic Models with Infinite Variance, first edition,
Chapman and Hall/CRC. (1994).

[19] Seppäläinen. T, Basics of Stochastic Analysis, (2014).



54 BAHRAM TARAMI AND MOHSEN AVAJI

[20] Wang. P, Liu. Z, Split-step backward balanced Milstein methods
for stiff stochastic systems, Appl. Numer. Math. 59 (2009) 1198-
1213.

[21] Wang. P, Liu. Y, Split-steps forward methods for stochastic dif-
ferential equations, J. Comput. Appl. Math. 233 (2010) 2641-2651.

[22] Yamada. T, Sur l’approximation des solutions d’équations différen-
tielles stochastiques, Z. Wahrscheinlichkeitstheorie und Verw. Ge-
biete 36 (1976), 153-164. MR 0413269 (54:1386)

[23] Zanzotto. P.A, On solutions of one-dimensional stochastic differ-
ential equations driven by stable Lévy motion, Stochastic Process.
Appl. 68 (1997) 209-228.

[24] Zanzotto. P.A, On stochastic differential equations driven by a
Cauchy process and other stable Lévy motion, Ann. Probab. 30, 2
(2002) 802-825.

Bahram Tarami
Assistant Professor of Statistics,
Department of Statistics,
College of sciences, Shiraz university,
Shiraz, Iran.
E-mail: tarami@shirazu.ac.ir; bahram_tarami@yahoo.com

Mohsen Avaji
Ph.D Student of Applied Mathematics,
Department of Applied Mathematics,
Faculty of Mathematical Sciences,
University of Tabriz,
29 Bahman Blvd, Tabriz, Iran.
E-mail: m.avaji@tabrizu.ac.ir; mohsenavaji@yahoo.com


	Introduction
	Semimartingales
	Lévy process
	-stable process

	SDE's driven by -stable Lévy motion
	Simulation of -stable stochastic processes and diffusions driven by -stable processes
	Result and conclusion
	Examples

	Compare with other methods
	References

