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Abstract. In this paper, we introduce a new kind of the logical entropy
through a local relative approach. The notions of local relative logical
entropy and local relative conditional logical entropy from an observer’s
viewpoint on local relative probability measure space are introduced
and some of their ergodic properties are studied. Some properties of the
local relative logical entropy of independent partitions are investigated
and the concavity property for the local relative logical entropy has
been proved. We show that, the basic properties of Shannon entropy
of partitions on probability measure spaces, are established for the case
of the local relative logical entropy. So the suggested measures can be
used besides of the Shannon entropy of partitions. Using the concept
of the local relative logical entropy of partitions, we define the local
relative logical entropy of a dynamical system and present some of its
properties. Finally, it is shown that the local relative logical entropy
of dynamical systems is invariant under isomorphism. So the notion of
local relative logical entropy of dynamical systems can be a new tool for
distinction of non-isomorphic relative dynamical systems.
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1 Introduction

The classical approach in the information theory is based on Shannon
entropy [19]. The study of concept entropy in current sciences is very
important. The entropy of a system specifies the degree of uncertainty
or the degree of chaotic behavior of it. For an information system it
determines the amount of information which we can obtain from it.
Kolmogorov and Sinai by using the notion of Shannon entropy defined
the entropy of measurable partitions. The notion of Kolmogorov- Sinai
entropy of finite partitions on probability measure space was studied
in [22]. Kolmogorov- Sinai entropy serves as a measure of information
of the considered experiment and has an important application in dy-
namical systems [11, 20, 21]. Some investigations concerning entropy of
dynamical systems and related notions were carried in [3, 5, 6, 7, 8]. In
[12, 17, 18], Good, Patil, Taillie and Rao defined and studied the concept
of logical entropy. Rao introduced precisely this concept as a quadratic
entropy [18] and in the years 2009 and 2013, the relation of logical en-
tropy to Shannon entropy was discussed by Ellerman [9, 10, 11]. Let
P = (p1, · · · , pn) ∈ Rn be a probability distribution. The logical en-
tropy of P was defined in [9] as h (P ) =

∑n
i=1 pi(1− pi). In the paper

by Ebrahimzadeh [3] the notion of logical entropy on quantum logic was
defined and studied. In [8], Ebrahmzadeh, Eslami Giski and Markechov
studied the logical entropy of dynamical systems on an algebraic struc-
ture.
One of the main fuzzy objects in physical phenomena is “observer”. The
amount of information which we can obtain from a system is depend on
an observer of it. So the entropy of a dynamical system is depend on an
observer of it. Since the view of an observer is different in any point, the
study of local entropy of dynamical systems from an observer’s view-
point is important. The notion of observer is very important in physics
and has been applied in dynamical systems [2, 16], topology [15, 17],
and information theory [4]. If X is a non-empty set, then a mapping
µ : X → [0, 1] is called a one-dimensional observer of X [13]. Molaei in
[13] introduced the notion of relative probability measure by the notion
of observer.
In [7], we defined and studied the logical entropy of finite measurable
partitions, and using the concept of logical entropy of measurable parti-
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tions, we introduced the notion of logical entropy of a dynamical system.
In the paper by Asadian and Ebrahimzadeh [1] the notions of relative
entropy and relative conditional entropy, by the notion of relative prob-
ability measure, were defined and studied. In this paper, we provide
analogies of the results on the relative probability measure space for the
case of the logical entropy.
We use of the notion of observer to define the local relative logical en-
tropy for dynamical systems. We show that, the basic properties of
Shannon entropy of dynamical systems on probability measure spaces,
are established for the case of the local relative logical entropy. So the
suggested measures can be used besides of the Shannon entropy of dy-
namical systems as measures of information which we can get from a
system. Note that the notion of Lfµ (x, T ) denotes the logical entropy of
T according to an observer viewpoint when it look at x.
In section 2, we present some basic notions. In section 3, the logical
entropy and the conditional logical entropy of finite partitions on the
relative probability measure space via a local approach are defined and
some of their ergodic properties are investigated. Then we study the
local relative logical entropy and the local relative conditional logical
entropy of independent partitions. We prove the concavity property
for the notion of local relative logical entropy. In section 4, using the
suggested concept of local relative logical entropy, we define the local
relative logical entropy of a dynamical system and prove some theo-
rems about the measure. Finally, it is shown that isomorphic dynamical
systems have the same local relative logical entropy. Accordingly, this
concept will be a new tool for distinction of non-isomorphic dynamical
systems.

2 Preliminary Facts

In this section, we shall recall some known concepts. Let X be a set. A
partition of X is a disjoint collection of subsets of X whose union is X.
Let f : X → X be a mapping and µ : X → [0, 1] be an observer of X.
Moreover let E be a subset of X and let x ∈ X. Then the local relative
probability measure of E with respect to an observer µ was defined in
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[13] by:

mf
µ (x,E) = lim sup

n→∞

1

n

n−1∑
i=0

χE
(
f i (x)

)
µ
(
f i (x)

)
.

Note that, mf
µ (x,E) denotes the measure of E according to an observer

viewpoint when it look at x.
The pair (X,mf

µ) is called a relative probability measure space.

Remark 2.1. [13] If we restrict our self to a probability measure space
(X,β,m) and we take the characteristic function XX as an observer,
and if we assume that f : X → X is a measure preserving map, then for
given x ∈ X and E ∈ β the Birkhoff ergodic theorem [10] implies that

mf
µ (x,E) = lim sup

n→∞

1

n

n−1∑
i=0

χE
(
f i (x)

)
= m (E)

almost every where.

So, relative probability measure is an extension of the notion of prob-
ability measure.

An example of this measure is presented in the present paper (see
Example 3.2).

Lemma 2.2. ([13], Theorem 2 ·2) Let x ∈ X, and let E1, E2 be two
disjoint subsets of X, then

mf
µ (x,E1 ∪ E2) = mf

µ (x,E1) +mf
µ (x,E2) .

Let E1, · · · , En, be disjoint subsets of X. From Lemma 2.2, by induction
we get

mf
µ

(
x,
⋃n

i=1
Ei

)
=

n∑
i=1

mf
µ(x,Ei). (1)

Let P = {A1, · · · , An} and Q = {B1, · · · , Bm} be two partitions of X.

The join of P,Q is the partition

P ∨Q = {Ai ∩Bj : Ai ∈ A,Bj ∈ B} .
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3 Logical Entropy of Partitions via a Local Rel-
ative Approach

We shall now define the notion of logical entropy through a local relative
approach by the notion of observer.

Definition 3.1. Let x ∈ X and P = {A1, · · · , An} be a partition of X.
The local relative logical entropy of P at x with respect to an observer
µ, is defined as follows:

Lfµ (x, P ) :=
n∑
i=1

mf
µ(x,Ai)(1−mf

µ (x,Ai)).

Remark that we may write

Lfµ (x, P ) =

n∑
i=1

mf
µ(x,Ai)(1−mf

µ(x,Ai))

=

n∑
i=1

mf
µ(x,Ai)−

n∑
i=1

(mf
µ(x,Ai))

2

= mf
µ(x,X)−

n∑
i=1

(mf
µ(x,Ai))

2
.

We give an example of this measure.

Example 3.2. LetX = [0, 1] and let f : X → X be defined by x 7→ 1−x.
Moreover let µ : X → [0, 1] be defined by x 7−→ 1

2x and let P =
{A1, A2, A3, A4} be a partition of X, where

A1 =

[
0,

1

4

]
, A2 = (

1

4
,
1

2
], A3 = (

1

2
,
3

4
], A4 =

(
3

4
, 1

]
.

If x = 1
3 then we obtain

mf
µ (x,A1) = lim sup

n→∞

1

n

n−1∑
i=0

χA1

(
f i (x)

)
µ
(
f i (x)

)
= lim sup

n→∞

1

n

(
χA1 (x) .

1

2
x+ χA1 (1− x) .

1

2
(1− x) + · · ·

)
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= lim sup
n→∞

1

n
(0 + 0 + 0 + · · · ) = 0,

mf
µ (x,A2) = lim sup

n→∞

1

n

(
1

2
× 1

3
+ 0 +

1

2
× 1

3
+ 0 + · · ·

)
= lim sup

n→∞

1

n

(
n

2
× 1

6

)
=

1

12
,

mf
µ (x,A3) = lim sup

n→∞

1

n

(
0 +

1

2
× 2

3
+ 0 +

1

2
× 2

3
+ 0 + · · ·

)
= lim sup

n→∞

1

n

(
n

2
× 1

3

)
=

1

6
,

mf
µ (x,A4) = lim sup

n→∞

1

n
(0 + 0 + 0 + · · · ) = 0,

and

mf
µ (x,X) = lim sup

n→∞

1

n

(
1

2
× 1

3
+

1

2
× 2

3
+

1

2
× 1

3
+ · · ·

)
= lim sup

n→∞

1

n

(
n

4
(
1

3
+

2

3
)

)
=

1

4
.

So

Lfµ (x, P )=mf
µ(x,X)−

4∑
i=1

(mf
µ(x,Ai))

2

=
1

4
−

(
02 +

(
1

12

)2

+

(
1

6

)2

+ 02

)
=

31

144
.

Let x ∈ X and let P = {A1, · · · , An}, Q = {B1, · · · , Bm} be two
partitions of X. The local relative conditional logical entropy of P given
Q is defined by:

Lfµ (x, P |Q) :=
n∑
i=1

m∑
j=1

mf
µ(x,Ai ∩Bj)(mf

µ(x,Bj)−mf
µ(x,Ai ∩Bj)).

It is clear that Lfµ (x, P |Q) ≥ 0.
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Theorem 3.3. Let x ∈ X and P, Q be two partitions of X. Then

1) Lfµ
(
x, P

∣∣ {X, ∅}) ≤ Lfµ (x, P ) with the equality if and only if mf
µ (x,X) = 1,

2) Lfµ (x, P ∨Q) = Lfµ (x,Q) + Lfµ
(
x, P

∣∣Q).
Proof. Let P = {A1, · · · , An} and Q = {B1, · · · , Bm}.

1) Since for each x ∈ X, mf
µ(x,X) ≤ 1, by the definition we obtain

Lfµ
(
x, P

∣∣ {X, ∅}) =
n∑
i=1

mf
µ(x,Ai)(m

f
µ(x,X)−mf

µ(x,Ai))

≤
n∑
i=1

mf
µ (x,Ai)

(
1−mf

µ (x,Ai)
)

= Lfµ (x, P ) .

2) From (1) and Definition 3.1, for each x ∈ X we have

Lfµ (x, P ∨Q)=

n∑
i=1

m∑
j=1

mf
µ(x,Ai ∩Bj)(1−mf

µ (x,Ai ∩Bj))

=
n∑
i=1

m∑
j=1

mf
µ(x,Ai ∩Bj)−

n∑
i=1

m∑
j=1

(mf
µ (x,Ai ∩Bj))

2

= mf
µ(x,X)−

n∑
i=1

m∑
j=1

(
mf
µ (x,Ai ∩Bj)

)2
.

On the other hand by (1) we may write

Lfµ (x,Q)=
m∑
j=1

mf
µ(x,Bj)(1−mf

µ(x,Bj))

=

m∑
j=1

mf
µ(x,Bj)−

n∑
i=1

(mf
µ(x,Bj))

2

= mf
µ(x,X)−

m∑
j=1

(mf
µ(x,Bj))

2
.
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Also by (1) we have

Lfµ
(
x, P

∣∣Q)= n∑
i=1

m∑
j=1

mf
µ(x,Ai ∩Bj)(mf

µ(x,Bj)−mf
µ (x,Ai ∩Bj))

=

n∑
i=1

m∑
j=1

mf
µ(x,Ai ∩Bj)mf

µ(x,Bj)−
n∑
i=1

m∑
j=1

(mf
µ (x,Ai ∩Bj))

2

=

m∑
j=1

(mf
µ(x,Bj))

2−
n∑
i=1

m∑
j=1

(
mf
µ (x,Ai ∩Bj)

)2
.

By combining the above relations we get

Lfµ (x, P ∨Q) =Lfµ (x,Q) +Lfµ
(
x, P

∣∣Q) .
�
In the next theorem, it is proved subadditivity of local relative logical

entropy of partitions.

Theorem 3.4. Let x ∈ X and P, Q be two partitions of X. Then

1) Lfµ (x, P ) ≥ Lfµ
(
x, P

∣∣Q),
2) Lfµ (x, P ∨Q) ≤ Lfµ (x, P ) + Lfµ (x,Q),

3) Lfµ (x, P ∨Q) ≥ max
{
Lfµ (x, P ) , Lfµ (x,Q)

}
.

Proof. Let P = {A1, · · · , An} and Q = {B1, · · · , Bm}.

1) Since mf
µ (x,X) ≤ 1, by (1) for every i = 1, · · · , n, we obtain

m∑
j=1

mf
µ(x,Ai ∩Bj)(mf

µ(x,Bj)−mf
µ (x,Ai ∩Bj))

≤
m∑
j=1

mf
µ(x,Ai ∩Bj)(

m∑
j=1

(mf
µ(x,Bj)−mf

µ (x,Ai ∩Bj)))

= mf
µ(x,Ai)(

m∑
j=1

(mf
µ (x,Bj)−mf

µ (x,Ai ∩Bj)))
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= mf
µ (x,Ai)

mf
µ (x,X)−

m∑
j=1

mf
µ (x,Ai ∩Bj)


≤ mf

µ (x,Ai)
(

1−mf
µ (x,Ai)

)
.

Therefore

Lfµ
(
x, P

∣∣Q) =
n∑
i=1

m∑
j=1

mf
µ(x,Ai ∩Bj)(m(x,Bj)−mf

µ (x,Ai ∩Bj))

≤
n∑
i=1

mf
µ (x,Ai)

(
1−mf

µ (x,Ai)
)

= Lfµ (x, P ) .

2) According to the first part of this theorem and Theorem 3.3 we
obtain

Lfµ (x, P ∨Q) = Lfµ (x,Q) + Lfµ
(
x, P

∣∣Q) ≤ Lfµ (x,Q) + Lfµ (x, P ) .

3) Since for each i, j, Ai ∩Bj = Bj ∩Ai we get

Lfµ (x, P ∨Q) = Lfµ (x,Q ∨ P ) .

Thus from Theorem 3.3, the assertion holds. �

Definition 3.5. Let P and Q be two partitions of X. Then P and Q
are called independent if for each A ∈ P,C ∈ Q and x ∈ X we have

mf
µ (x,A ∩ C) = mf

µ (x,A) .mf
µ (x,C) .

Theorem 3.6. Let x ∈ X and P, Q be two independent partitions of
X and let mf

µ (x,X) = 1. Then

1) Lfµ (x, P ∨Q) = Lfµ (x, P ) + Lfµ (x,Q)− Lfµ (x, P )Lfµ (x,Q) ,

2) Lfµ
(
x, P

∣∣Q)=Lfµ (x, P )
(

1− Lfµ (x,Q)
)

.

Proof. Let P = {A1, · · · , An} and Q = {B1, · · · , Bm}.
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1) From Definition 3.1, we obtain

Lfµ (x, P ∨Q) = mf
µ(x,X)−

n∑
i=1

m∑
j=1

(mf
µ(x,Ai ∩ Cj))

2

= mf
µ(x,X)−

n∑
i=1

m∑
j=1

(mf
µ(x,Ai))

2
(mf

µ(x,Cj))
2

= 1− (

n∑
i=1

(mf
µ(x,Ai))

2
)(

m∑
j=1

(mf
µ(x,Cj))

2
)

= 1−
m∑
j=1

(mf
µ(x,Cj))

2
+

m∑
j=1

(mf
µ(x,Cj))

2

− (
n∑
i=1

(mf
µ(x,Ai))

2
)(

m∑
j=1

(mf
µ(x,Cj))

2
)

= 1−
m∑
j=1

(mf
µ(x,Cj))

2

+

m∑
j=1

(mf
µ(x,Cj))

2
(1−

n∑
i=1

(mf
µ(x,Ai))

2
)

= mf
µ(x,X)−

m∑
j=1

(mf
µ(x,Cj))

2

+
m∑
j=1

(mf
µ(x,Cj))

2
(mf

µ(x,X)−
n∑
i=1

(mf
µ(x,Ai))

2
)

= Lfµ (x,Q) +

m∑
j=1

(mf
µ(x,Cj))

2
(Lfµ (x, P ))

= Lfµ (x,Q) + (1− Lfµ (x,Q))Lfµ (x, P )

= Lfµ (x, P ) + Lfµ (x,Q)− Lfµ (x, P )Lfµ (x,Q) .

2) Based on the first part of this theorem and Theorem 3.3, we obtain

Lfµ
(
x, P

∣∣Q) = Lfµ (x, P ∨Q)− Lfµ (x,Q)

= Lfµ (x, P )− Lfµ (x, P )Lfµ (x,Q)
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= Lfµ (x, P )
(

1− Lfµ (x,Q)
)
.

�
In the following theorem, we prove the concavity property for the

notion of local relative logical entropy.

Theorem 3.7. Let x ∈ X and P = {A1, · · · , An} be a partition of
X. Moreover let f : X → X be a mapping, and µ1 : X → [0, 1] and
µ2 : X → [0, 1] be two observers of X, such that for each α ∈ [0, 1] and

Ai ∈ P , mf
αµ1+(1−α)µ2(x,Ai) = αmf

µ1(x,Ai) + (1− α)mf
µ2(x,Ai). Then

we have

Lfαµ1+(1−α)µ2 (x, P ) ≥ αLfµ1 (x, P ) + (1−α)Lfµ2 (x, P ) .

Proof. Since
n∑
i=1

(mf
µ1(x,Ai))

2
+

n∑
i=1

(mf
µ2(x,Ai))

2 ≥ 2

n∑
i=1

mf
µ1 (x,Ai)m

f
µ2 (x,Ai),

from Definition 3.1 we obtain

Lfαµ1+(1−α)µ2 (x, P ) =
n∑
i=1

mf
αµ1+(1−α)µ2(x,Ai)

−
n∑
i=1

(mf
αµ1+(1−α)µ2(x,Ai))

2

=
n∑
i=1

(αmf
µ1 + (1− α)mf

µ2)(x,Ai)

−
n∑
i=1

((αmf
µ1 + (1− α)mf

µ2)(x,Ai))
2

=α
n∑
i=1

mf
µ1(x,Ai)− α2

n∑
i=1

(mf
µ1(x,Ai))

2

+ (1− α)
n∑
i=1

mf
µ2 (x,Ai)

− (1− α)2
n∑
i=1

(mf
µ2(x,Ai))

2
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− 2α(1− α)

n∑
i=1

mf
µ1(x,Ai)m

f
µ2(x,Ai)

≥ α
n∑
i=1

mf
µ1(x,Ai)

− α2
n∑
i=1

(mf
µ1(x,Ai))

2
+ (1− α)

n∑
i=1

mf
µ2 (x,Ai)

− (1− α)2
n∑
i=1

(mf
µ2(x,Ai))

2

−α (1− α)
n∑

qi=1

((mf
µ1(x,Ai))

2
+
(
mf
µ2(x,Ai))

2
)

= α

n∑
i=1

mf
µ1(x,Ai)

+
(
−α2 − α (1− α)

) n∑
i=1

(mf
µ2(x,Ai))

2

+ (1− α)
n∑
i=1

mf
µ2 (x,Ai)

+
(
−(1− α)2 − α (1− α)

) n∑
i=1

(mf
µ2(x,Ai))

2

=α
n∑
i=1

mf
µ1(x,Ai)− α

n∑
i=1

(mf
µ1(x,Ai))

2

+(1− α)
n∑
i=1

mf
µ2(x,Ai)

− (1− α)
n∑
i=1

(mf
µ2(x,Ai))

2

=αLfµ1 (x, P ) + (1−α)Lfµ2 (x, P ) .

�
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4 Local relative logical entropy of dynamical
systems

If T : X → X is a mapping, then T is called local relative probability
measure-preserving (with respect to an observer µ and x ∈ X) if

mf
µ

(
x, T−1E

)
=mf

µ (x,E) .

Let T : X → X be a local relative probability measure-preserving and
P be a finite partition of X. Then T−1P is a finite partition of X, too.
In this section, T is called a local relative dynamical system.

Theorem 4.1. Let T : X → X be a local relative dynamical system and
P be a finite partition of X and x ∈ X. Then

Lfµ
(
x, T−1P

)
=Lfµ (x, P ) .

Proof. Let P = {A1, · · · , An}. Since for eachAi ∈ P , mf
µ

(
x, T−1Ai

)
=mf

µ (x,Ai)
we obtain

Lfµ
(
x, T−1P

)
=

n∑
i=1

mf
µ(x, T−1Ai)(1−mf

µ(x, T−1Ai))

=
n∑
i=1

mf
µ(x,Ai)(1−mf

µ(x,Ai))

= Lfµ (x, P ) .

�

Corollary 4.2. If T is a local relative dynamical system and P, Q are
two finite partitions of X and x ∈ X, then

Lfµ
(
x, T−1P

∣∣T−1Q) = Lfµ
(
x, P

∣∣Q) .
Proof. Let P = {A1, · · · , An} and Q = {C1, · · · , Cm}. For each Ai ∈ P
and Cj ∈ Q we have

T−1(Ai ∩ Cj) = T−1Ai ∩ T−1Cj .
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So T−1 (P ∨Q) = T−1P ∨ T−1Q. From Theorems 3.3 and 4.1, we
obtain

Lfµ
(
x, T−1P

∣∣T−1Q) = Lfµ
(
x, T−1P ∨ T−1Q

)
− Lfµ

(
x, T−1Q

)
= Lfµ

(
x, T−1(P ∨Q)

)
− Lfµ

(
x, T−1Q

)
= Lfµ (x, P ∨Q )− Lfµ (x,Q)

= Lfµ
(
x, P

∣∣Q) .
�

Lemma 4.3. ([22], Theorem 4 ·9) Let {an}∞n=1 be a sequence of non-
negative numbers such that ak+t ≤ ak + at for every k, t ∈ N, then
limn→∞

1
nan exists.

Theorem 4.4. Let T be a local relative dynamical system and let P be

a finite partition of X and x ∈ X. Then limn→∞
1
nL

f
µ

(
x,
∨n−1
i=0 T

−iP
)

exists.

Proof. Put an = Lfµ
(
x,
∨n−1
i=0 T

−iP
)

. According to the subadditiv-

ity property of the local relative logical entropy (Theorem 3.4 ii)) and
Theorem 4.1, we get

an+p = Lfµ

(
x,

n+p−1∨
i=0

T−iP

)

≤ Lfµ

(
x,

n−1∨
i=0

T−iP

)
+ Lfµ

(
x,

n+p−1∨
i=n

T−iP

)

= an + Lfµ

(
x,

p−1∨
i=0

T−iP

)
= an + ap.

By the preceding lemma limn→∞
1
nL

f
µ

(
x,
∨n−1
i=0 T

−iP
)

exists. �

Definition 4.5. Let T be a local relative dynamical system and P be a
finite partition of X. The local relative logical entropy of T with respect
to P is defined by the formula:

Lfµ (x, T, P ) := lim
n→∞

1

n
Lfµ

(
x,

n−1∨
i=0

T−iP

)
.
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The local relative logical entropy of T is defined as:

Lfµ (x, T ) := supPL
f
µ (x, T, P ) ,

where the supremum is taken over all finite partitions P of X.

Remark that Lfµ (x, T ) denotes the logical entropy of T according to
an observer viewpoint when it look at x.

Observe that Lfµ (x, T ) ≥ 0, and

Lfµ (x, idX) = 0.

Theorem 4.6. Let T be a local relative dynamical system and let P be
a finite partition of X and x ∈ X. Then

Lfµ
(
x, T, T−1P

)
= Lfµ (x, T, P ) .

Proof. From Theorem 4.1 we have for each n ∈ N,

Lfµ

(
x,

n∨
i=1

T−iP

)
= Lfµ

(
x,

n−1∨
i=0

T−iP

)
.

Therefore we obtain

Lfµ
(
x, T, T−1P

)
= limn→∞

1

n
Lfµ

(
x,

n−1∨
i=0

T−i(T−1P )

)

= limn→∞
1

n
Lfµ

(
x,

n−1∨
i=0

T−(i+1)P

)

= limn→∞
1

n
Lfµ

(
x,

n∨
i=1

T−iP

)
= Lfµ (x, T, P ) .

�

Definition 4.7. Let T1 : X → X and T2 : X → X be two local relative
dynamical system with respect to x ∈ X. We say that T1 and T2 are
isomorphic if there exists a bijective mapping ϕ : X → X satisfying the
following conditions:
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1) ϕoT1 (x) = T2oϕ (x),

2) mf
µ (x,E) = mf

µ (x, ϕ(E)) for every E ⊆ X.

In the following theorem we prove that the local relative logical en-
tropy of local relative dynamical systems is invariant under isomorphism.

Theorem 4.8. If local relative dynamical systems T1 and T2 are iso-
morphic, then for each x ∈ X,

Lfµ (x, T1) = Lfµ (x, T2) .

Proof. Let a mapping ϕ : X → X represents an isomorphism of local
relative dynamical systems T1 and T2. Let P = {A1, · · · , An} be an
arbitrary partition of X, then ϕ (P ) = {ϕ (A1) , · · · , ϕ (An)} is also a
partition of X. By Definition 3.1, we have

Lfµ (x, ϕ(P )) =

n∑
i=1

mf
µ(x, ϕ(Ai))(1−mf

µ (x, ϕ(Ai)))

=

n∑
i=1

mf
µ(x,Ai)(1−mf

µ (x,Ai)) = Lfµ (x, P ) .

Therefore

Lfµ (x, T2, P ) = lim
n→∞

1

n
Lfµ(x,

n−1∨
i=0

T2
−iP )

= lim
n→∞

1

n
Lfµ(x, ϕ−1

(
n−1∨
i=0

T2
−iP

)
)

= lim
n→∞

1

n
Lfµ(x,

n−1∨
i=0

ϕ−1(T2
−iP ))

= lim
n→∞

1

n
Lfµ(x,

n−1∨
i=0

T1
−i(ϕ−1P )) = Lfµ

(
x, T1, ϕ

−1P
)
.

Thus

Lfµ (x, T 2) = supPL
f
µ (x, T2, P ) = supPL

f
µ

(
x, T 1, ϕ

−1P
)
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≤ supPL
f
µ (x, T 1, P ) = Lfµ (x, T 1) ,

where the supremum on the left side of the inequality is taken over
all finite partitions P of X and the supremum on the right side of the
inequality is taken over all finite partitions P of X.

On the other hand, let Q = {B1, · · · , Bm} be any partition of X,
then ϕ−1 (Q) is a partition of X and we obtain

Lfµ
(
x, ϕ−1 (Q)

)
= Lfµ (x,Q) .

Therefore similar the above we get

Lfµ (x, T1, Q) = Lfµ (x, T2, ϕ (Q)) ,

and hence
Lfµ (x, T1) ≤ Lfµ (x, T 2) .

�

5 Conclusion

In this paper we introduced the notions of logical entropy and logical
conditional entropy of finite partitions through a local relative approach.
We proved some of their ergodic properties. The property of subad-
ditivity for the local relative logical entropy of partitions was proved.
Furthermore we studied the notion of local relative logical entropy of in-
dependent partitions and we proved the concavity property for this mea-
sure. In the final section, using the suggested concept of local relative
logical entropy of finite partitions, we defined the local relative logical
entropy of a dynamical system. Finally, it was shown that the isomor-
phic dynamical systems have the same local relative logical entropy. So
the notion of local relative logical entropy of dynamical systems can be
a new tool for distinction of non-isomorphic relative dynamical systems.
The suggested measure can be used besides of the Shannon entropy of
dynamical systems especially we mentioned which entropy of a dynam-
ical system is depend on an observer of it and we used the notion of
observer in the definition of Local relative logical entropy of a dynami-
cal system.

Acknowledgments: The authors thank the editor and the referees
for their valuable comments and suggestions.
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