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Abstract. This paper suggests a novel and efficient method for solving
systems of Fredholm-Volterra integro-differential equations (FVIDEs).
A Chebyshev matrix approach is implemented for solving linear and
nonlinear FVIDEs under initial boundary conditions. The aim of this
work is to construct a quick and precise numerical approximation by
a simple, tasteful and powerful algorithm based on the Chebyshev se-
ries representation for solving such systems. The properties of shifted
Chebyshev polynomials are used to transform the system of FVIDEs
into a system of algebraic equations. Then, the corresponding matrix
equation will be solved by using the Galerkin-like procedure to find
the unknown coefficients which are related to the approximate solution.
Also, the polynomial convergence rate of our method is discussed by
preparing some theorems and lemmas. Finally, some numerical exam-
ples are given to illuminate the reliability and high accuracy of this
algorithm in comparison with some other well-known methods.
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1 Introduction

Systems of linear and nonlinear integro-differential equations and their
solutions play a major role in science and engineering. A physical event
can be modeled as a differential equation, an integral equation or an
integro-differential equation or a system of these equations. Since most
of these equations cannot be solved explicitly, it is often necessary to
resort to numerical techniques which are appropriate combinations of
numerical integration and interpolation.

Fredholm integro-differential equations (FIDEs) and FVIDEs are en-
countered in model problems of science and engineering. Such kind of
equations arises in the mathematical modeling of various physical phe-
nomena, such as the heat conduction, the materials with memory and the
combined conduction, convection and radiation problems. In the past
decades, both mathematicians and physicists have devoted considerable
effort to find robust and stable numerical methods for solving systems
of linear and nonlinear FIDEs and FVIDEs with physical interest. Nu-
merical and analytical methods have included Haar functions method
[17], the Legendre matrix method [21], the Lagrange method [25], the
differential transformation method [5], the Tau method [19], the Cheby-
shev polynomial method [4], the Bernstein operational matrix approach
[15], the Taylor expansion method [13], and the operational Tau method
[1]. However, several numerical methods have been used to approximate
the solution of FVIDEs such as the collocation method [10], Legendre
collocation method [18], Taylor polynomial method [22], Least squares
method [23] and so on.

Since 1994, the Taylor, Chebyshev, Legendre, Bessel, Hermite, La-
guerre, Bernoulli and Bernstein matrix methods have been used to solve
high-order linear and nonlinear (including hyperbolic partial differential
equations) Fredholm-Volterra integro-differential equations [6, 3, 28, 8,
14, 27].

Up to now, several numerical methods have been used for solving
FVIDEs with different forms of bases. In most of these articles, to ap-
proximate the solution of these equations, the bases of Legendre, Bern-
stein, · · · are used. Recently, some authors applied these methods for
solving systems of FIDEs, where most of them consists two types of
Volterra and Fredholm- Volterra equations. In this paper, we propose
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an efficient method to approximate the solution of system of FVIDEs.
To do this, at first the N -th truncation of Chebyshev series for unknown
functions yj is substituted instead of the unknown function in the given
FVIDEs. Then, a system of linear equations with unknown Chebyshev
coefficients will be obtained. In the next step, these unknown coefficients
will be determined by using the Galerkin-like procedure [9]. A violent
mathematical proof is provided for the error analysis and convergence
of this approach.

In this work, the shifted Chebyshev Galerkin matrix method is pre-
sented for solving the system of high-order linear FVIDEs in the form

n1∑
n=0

k∑
j=1

Pi,j,n(x)y
(n)
j (x) = gi(x) +

∫ b

a

n2∑
n=0

k∑
j=1

κfi,j,n(x, γ)y
(n)
j (γ)dγ

+

∫ x

a

n3∑
n=0

k∑
j=1

κvi,j,n(x, γ)y
(n)
j (γ)dγ, a ≤ x, γ ≤ b, i = 1, ..., k, n1 ≥ n2, n3,

(1)

with the initial-boundary conditions

n1−1∑
j=0

[
αi,j,ny

(j)
n (a) + βi,j,ny

(j)
n (b)

]
= µn,i, i = 0, 1, ..., n1−1, n = 1, 2, ..., k,

(2)
where Pi,j,n(x) and gi(x) are given continuous functions in L2[(a, b)],

κfi,j,n(x, γ) (f is the abbreviation of Fredholm part) and κvi,j,n(x, γ) (v is
the abbreviation of Volterra part) are given sufficiently smooth kernel

functions in L2[(a, b) × (a, b)]. Also, y
(j)
n (a), y

(j)
n (b) and µn,i are real

constants and y
(0)
j = yj , j = 1, 2, ..., k are unknown functions that will

be determined. Moreover, we extend our scheme for solving the following
nonlinear FVIDEs

n1∑
n=0

k∑
j=1

Pi,j,n(x)y
(n)
j (x) = gi(x) +

∫ b

a

n2∑
n=2

k∑
j=1

κfi,j,n(x, γ)(yj(γ))
ndγ

+

∫ x

a

n3∑
n=2

k∑
j=1

κvi,j,n(x, γ)(yj(γ))
ndγ, a ≤ x, γ ≤ b, i = 1, ..., k, (3)
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with the same initial-boundary conditions.
Our aim is to find an approximate solution of Eq. (1) under the

mixed conditions (2) which can be expressed in the following truncated
Chebyshev series form

Nyi(x) =

N∑
n=0

ai,nT
∗
n(x), i = 1, 2, ..., k, a ≤ x ≤ b, (4)

where N will be chosen such that the approximate solution (4) fulfills
the initial-boundary conditions (2), i.e. N ≥ n1. Also, T ∗

n(x) are shifted
Chebyshev polynomials on [a, b], that satisfy the following formula

T ∗
n(x) = Tn

(
2

b− a
x− b+ a

b− a

)
, a ≤ x ≤ b, n ≥ 0,

where

T0(x) = 1, T1(x) = x, Tn(x) = 2xTn−1(x)−Tn−2(x), n ≥ 2, −1 ≤ x ≤ 1.

2 The shifted Chebyshev Galerkin method for
FVIDEs

In this section, we will construct the matrix form of each term of equation
(1). Assume that Eq. (1) under conditions (2) have a unique solution.
We can write the approximate solution yj(x) in the following matrix
form [

Nyj(x)
]
= T∗(x)Aj , (5)

where

T∗(x) =
[
T ∗
0 (x) · · · T ∗

N (x)
]
, Aj =

[
aj,0 · · · aj,N

]T
, j = 1, 2, ...k.

The n-th order derivative of this solution is[
Ny

(n)
j (x)

]
= T∗(n)

(x)Aj . (6)

Let X(x) =
[
1 x · · · xN

]
. Then, one can write the matrix form of

T∗(x) as follows
T∗(x) = X(x)DT , (7)
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where D is the (N + 1)× (N + 1) matrix coefficients defined by

D =



1 0 · · · 0
a+b

(a−b)1
− 2

a−b · · · 0

...
...

. . . 0

N∑
k=0

aN−kbk

 2N
2k


(a−b)N

−N
N−1∑
k=0

aN−(k+1)bk

 2N
2k + 1


(a−b)N

· · · (−1)
N 22N−1

(a−b)N


.

The n-th order derivative of expression (7) is

T∗(n)
(x) = X(n)(x)DT . (8)

The relationship between matrix X(x) and its derivative X(n)(x) is

X(n)(x) = X(x)
(
BT
)n
, (9)

where

BT =



0 1 0 0 · · · 0 0
0 0 2 0 · · · 0 0
0 0 0 3 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · N − 1 0
0 0 0 0 · · · 0 N
0 0 0 0 · · · 0 0


(N+1)(N+1)

,

and
(
BT
)0

= [I](N+1)(N+1) is the unit matrix. Substituting (9) in

relation (8), we get the matrix representation of T∗(n)
(x) in the following

form

T∗(n)
(x) = X(x)

(
BT
)n
DT . (10)

Replacing relations (7) and (10) in Eqs. (5) and (6), respectively, one
obtain

Nyj(x) = X(x)DTAj , j = 1, 2, ..., k,

and

Ny
(n)
j (x) = X(x)

(
BT
)n
DTAj , j = 1, 2, ..., k, n = 0, 1, ..., n1.
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Therefore, the matrices Ny(n)(x), n = 0, 1, ..., n1 can be expressed as
follows

Ny(n)(x) = X(x)
(
B̄
)n
D̄A, (11)

where

Ny(n)(x) =


Ny

(n)
1 (x)

Ny
(n)
2 (x)
...

Ny
(n)
k (x)

, A =


A1

A2
...

Ak

, D̄ =


DT 0 · · · 0
0 DT · · · 0
...

...
. . .

...
0 0 · · · DT


k×k

,

B̄ =


BT 0 · · · 0
0 BT · · · 0
...

...
. . .

...
0 0 · · · BT


k×k

, X̄(x) =


X(x) 0 · · · 0
0 X(x) · · · 0
...

...
. . .

...
0 0 · · · X(x)


k×k

.

System (1) can be written in the following matrix form

n1∑
n=0

Pn(x)
Ny(n)(x) = g(x) + F(x) +V(x), (12)

where

Pn(x) =


p1,1,n(x) p1,2,n(x) · · · p1,k,n(x)
p2,1,n(x) p2,2,n(x) · · · p2,k,n(x)

..

.
..
.

. . .
..
.

pk,1,n(x) pk,2,n(x) · · · pk,k,n(x)

 , Ny(n)(x) =


Ny

(n)
1 (x)

Ny
(n)
2 (x)
..
.

Ny
(n)
k (x)

 , g(x) =


g1(x)
g2(x)

..

.
gk(x)

 ,

F(x) =

n2∑
n=0

∫ b

a
κf
n(x, γ)

Ny(n)(γ)dγ, V(x) =

n3∑
n=0

∫ x

a
κv
n(x, γ)

Ny(n)(γ)dγ,

κf
n(x, γ) =


κf
1,1,n κf

1,2,n · · · κf
1,k,n

κf
2,1,n κf

2,2,n · · · κf
2,k,n

.

..
.
..

. . .
.
..

κf
k,1,n κf

k,2,n · · · κf
k,k,n

 , κv
n(x, γ) =


κv
1,1,n κv

1,2,n · · · κv
1,k,n

κv
2,1,n κv

2,2,n · · · κv
2,k,n

.

..
.
..

. . .
.
..

κv
k,1,n κv

k,2,n · · · κv
k,k,n

 ,

(13)

F(x) =
[

I1(x) I2(x) · · · Ik(x)
]T

, V(x) =
[

V1(x) V2(x) · · · Vk(x)
]T

,
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and

Ii(x) =

∫ b

a

n2∑
n=0

k∑
j=1

κf
i,j,n(x, γ)y

(n)
j (γ)dγ, Vi(x) =

∫ x

a

n3∑
n=0

k∑
j=1

κv
i,j,n(x, γ)y

(n)
j (γ)dγ.

The function Pi,j,n(x), can be approximated by Chebyshev matrix form
as follows

Pi,j,n(x) =

N∑
l=0

pi,j,n,lT
∗
l (x), (14)

where

pi,j,n,0 =
2

π(b− a)

∫ b

a

(
1−

(
2x

b− a
− b+ a

b− a

)2
)− 1

2

Pi,j,n(x)dx,

and

pi,j,n,l =
4

π(b− a)

∫ b

a

(
1−

(
2x

b− a
− b+ a

b− a

)2
)− 1

2

Pi,j,n(x)T
∗
l (x)dx, l = 1, 2, ..., N.

Also, Eq. (14) can be written as

Pi,j,n(x) = T∗(x)P̃i,j,n, (15)

where
P̃i,j,n =

[
pi,j,n,0 pi,j,n,1 · · · pi,j,n,N

]T
.

Using relation (7), Eq. (15) becomes

pi,j,n(x) = X(x)DT P̃i,j,n.

Therefore,

Pn(x) =


X(x)DT P̃1,1,n X(x)DT P̃1,2,n · · · X(x)DT P̃1,k,n

X(x)DT P̃2,1,n X(x)DT P̃2,2,n · · · X(x)DT P̃2,k,n
...

...
. . .

...

X(x)DT P̃k,1,n X(x)DT P̃k,2,n · · · X(x)DT P̃k,k,n

 .

For j = 1, ..., k, the function gj(x) can be approximated by the Cheby-
shev matrix form as follows

gj(x) =
N∑
l=0

gj,lT
∗
l (x), (16)
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where

gj,0 =
2

π(b− a)

∫ b

a

(
1−

(
2x

b− a
− b+ a

b− a

)2
)− 1

2

gj(x)dx,

and

gj,l =
4

π(b− a)

∫ b

a

(
1−

(
2x

b− a
− b+ a

b− a

)2
)− 1

2

gj(x)T
∗
l (x)dx, l = 1, 2, ..., N.

Eq. (16), can be written as

gj(x) = T∗(x)Gj , j = 1, 2, ..., k, (17)

where

Gj =
[
gj,0 gj,1 · · · gj,N

]T
.

Using relation (7), Eq. (17) becomes

gj(x) = X(x)DTGj ,

so

g(x) =
[
X(x)DTG1 X(x)DTG2 · · · X(x)DTGk

]T
.

Also, the kernel functions can be approximated by the truncated Cheby-
shev series

κfi,j,n(x, t) =
N∑

m=0

N∑
r=0

(
Cκfi,j,n,m,r

)
T ∗
m(x)T ∗

r (t) = T∗(x)Cκf
i,j,nT

∗T (t),

(18)
and

κvi,j,n(x, t) =
N∑

m=0

N∑
r=0

(
Cκvi,j,n,m,r

)
T ∗
m(x)T ∗

r (t) = T∗(x)Cκv
i,j,nT

∗T (t),

(19)
where

Cκf
i,j,n =

[
Cκfi,j,n,m,r

]
, Cκv

i,j,n =
[
Cκvi,j,n,m,r

]
, m, r = 0, ..., N, i, j = 1, ..., k.
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Considering relations (18), (19) and (7), one obtains the matrix form of

κfi,j,n(x, t) and κvi,j,n(x, t) as follows

κfi,j,n(x, t) = X(x)DT Cκf
i,j,nDXT (t), (20)

κvi,j,n(x, t) = X(x)DT Cκv
i,j,nDXT (t). (21)

Therefore, we have

κf
n(x, t) =


X(x)DTCκf

1,1,nDXT (t) · · · X(x)DTCκf
1,k,nDXT (t)

X(x)DTCκf
2,1,nDXT (t) · · · X(x)DTCκf

2,k,nDXT (t)
...

. . .
...

X(x)DT Cκf
k,1,nDXT (t) · · · X(x)DT Cκf

k,k,nDXT (t)

 ,

and matrix κv
n(x, t) is defined in a similar way.

Considering Eqs. (11), (12), (13), (20) and (21), one obtains
n1∑
n=0

Pn(x)X(x)
(
B̄
)n
D̄−

n2∑
n=0

∫ b
a κf

n(x, γ)X(x)
(
B̄
)n
D̄dγ

−
n3∑
n=0

∫ x
a κv

n(x, γ)X(x)
(
B̄
)n
D̄dγ

A = g(x).

We suppose that

M =

n1∑
n=0

Pn(x)X(x)
(
B̄
)n
D̄−

n2∑
n=0

∫ b

a
κf
n(x, γ)X(x)

(
B̄
)n
D̄dγ

−
n3∑
n=0

∫ x

a
κv
n(x, γ)X(x)

(
B̄
)n
D̄dγ, (22)

which is in the components form as follows

M =
[
m1(x) m2(x) · · · mk(x)

]T
.

Taking the inner product of Eq. (22) with T ∗
j (x), 0 ≤ j ≤ N , one can

find the following relations

⟨
M, T ∗

j (x)
⟩
=
⟨
g, T ∗

j (x)
⟩
⇔


∫ b

a
m1(x)T

∗
j (x)dx

...∫ b

a
mk(x)T

∗
j (x)dx

 =


∫ b

a
g1(x)T

∗
j (x)dx

...∫ b

a
gk(x)T

∗
j (x)dx

 ,

(23)
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to construct a linear system with k(N + 1) algebraic equations and
k(N + 1) unknowns Chebyshev coefficients. Hence, the fundamental
matrix Eq. (23) corresponding to Eq. (1) can be written in the form of

WA = G, (24)

where

W =
[∫ b

a m1(x)T
∗
j (x)dx

∫ b
a m2(x)T

∗
j (x)dx · · ·

∫ b
a mk(x)T

∗
j (x)dx

]T
,

and

G =
[∫ b

a g1(x)T
∗
j (x)dx

∫ b
a g2(x)T

∗
j (x)dx · · ·

∫ b
a gk(x)T

∗
j (x)dx

]T
.

The initial-boundary conditions (2), yields

n1−1∑
j=0

[
αjX̄(a) + βjX̄(b)

](
B̄T
)j
D̄A = µ,

where

αj =


α1
j 0 · · · 0

0 α2
j · · · 0

...
...

. . .
...

0 0 · · · αk
j

 , βj =


β1
j 0 · · · 0

0 β2
j · · · 0

...
...

. . .
...

0 0 · · · βk
j

 , µ =


µ1

µ2
...
µk

 ,

µi =


µi,0

µi,1
...

µi,n1−1

 , αn
j =


α0,j,n

α1,j,n
...

αn1−1,j,n

 , βn
j =


β0,j,n
β1,j,n
...

βn1−1,j,n

 ,

for n = 1, 2, ..., k. So, these initial-boundary conditions can be written
in the following matrix form

UA = µ or [U;µ] , (25)

where

U =

n1−1∑
j=0

[
αjX̄(a) + βjX̄(b)

](
B̄T
)j
D̄.



SHIFTED CHEBYCHEV POLYNOMIAL METHOD FOR... 65

Finally, to obtain the solution of Eq. (1) under the conditions (2) by
replacing the rows of matrix U and µ by the rows of the matrices W
and G, respectively, we get

W̃A = G̃. (26)

For convenience, if the last n1k rows of the matrix W are replaced, we
have the new augmented matrix form as follows[
W̃; G̃

]
=

w1,1 w1,2 · · · w1,k(N+1) g1,0(x)
...

...
...

...
...

wk(N−n1+1),1 wk(N−n1+1),2 · · · wk(N−n1+1),k(N+1) gk,k(N−n1+1)(x)
u1,1 u1,2 · · · u1,k(N+1) µ1,0

...
...

...
...

...
un1k,1 un1k,2 · · · un1k,k(N+1) µk,n1−1


,

(27)

where, gi,j =
∫ b
a gi(x)T

∗
j (x)dx. However, we do not have to replace

the last rows. For example, if the matrix W is singular, then the
rows that are linear dependent or all zeros are replaced. If rankW̃ =
rank[W̃; G̃] = k(N + 1), then matrix A (thereby the unknown Cheby-
shev coefficients) is uniquely determined. Therefore, system (1) with
the initial-boundary conditions (2) has a unique solution. It should
be noted that, if matrix W̃ is singular and rankW̃ = rank[W̃; G̃] <
k(N + 1), then we may find a specific solution. Otherwise if rankW̃ ̸=
rank[W̃; G̃] < k(N + 1), then there is no solution.

By solving algebraic system (27), we can find the Chebyshev coef-
ficients ai,n, i = 1, ..., k, n = 0, ..., N . Eventually, substituting these
Chebyshev coefficients in (4), the required approximate solution for the
FVIDEs (1) will be determined.

Remark 2.1. Note that for solving (3) we apply a similar procedure,
and because of exhibiting additional discussions we remove explaining
the method of solution in this case. Moreover, the associated algebraic
system of (3) is a nonlinear one instead of linear.
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3 Convergence analysis

The goal of this section is to analyze the proposed approximation scheme
for numerical solution of FVIDEs (1). In order to study the convergence
analysis of this method we will give some useful lemmas, theorems and
definitions. First we introduce some notations. Suppose that H be a
Hilbert space L2[a, b], where a, b ∈ R, ηN = {T ∗

0 , T
∗
1 , ..., T

∗
N} ⊂ H and

S = span(ηN ), endowed with the norm

∥yj∥2 =
[∫ b

a
|yj(x)|2

] 1
2

, yj ∈ L2[a, b]. (28)

The Hilbert space H with the norm (28) is strictly convex. Therefore,
if yj is an arbitrary element in H, due to S being a finite dimensional
vector space, yj has a unique best approximation out of S such as s0 ∈ S,
such that

∥yj − s0∥2 ≤ ∥yj − s∥2, for all s ∈ S,

where ∥yj∥22 =< yj , yj >. Since s0 ∈ S, there exist unique coefficients
Aj , j = 1, ..., k, such that

yj ≃ s0 =
N∑
l=0

aj,kT
∗
k (x) = T∗(x)Aj .

Through these informations, the subsequent theorems, lemmas and def-
initions can be outlined:

Theorem 3.1. [20] If H is a normed linear space and W be a finite-
dimensional subspace of H, then, given h ∈ H, there exists w∗ ∈ W
such that

∥h− w∗∥2 ≤ ∥h− w∥2, for all h ∈ W.

Definition 3.2. [20] Let yj(x) be defined on [a, b], the modulus of con-
tinuity of yj(x) on [a, b], ω (yj ; [a, b]; δ), is defined for δ > 0 by

ω (yj ; [a, b]; δ) = sup {|yj(x1)− yj(x2)| : x1, x2 ∈ [a, b], |x1 − x2| < δ} .

Lemma 3.3. [20] Suppose that g(x) = yj(Ax+B) for c ≤ x ≤ d, then

ω(g; [c, d]; δ) = ω(yj ; [Ac+B,Ad+B];Aδ).
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Theorem 3.4. [20] If f(x) is bounded for 0 ≤ x ≤ 1, then

∥yj − PN (yj)∥∞ ≤ 3/2 ω
(
yj , [0, 1], 1/

√
N
)
, N = 1, 2, ...,

where

PN (yj) =
N∑
k=0

yj

(
k

N

)
T ∗
k ,

and ∥yj∥∞ = max {|yj(x)| : 0 ≤ x ≤ 1}.

Lemma 3.5. If yj : [a, b] → R is bounded, S = span{T ∗
0 , T

∗
1 , ..., T

∗
N} and

T∗(x)Aj is the best approximation to yj out of S, then

∥yj −T∗(x)Aj∥2 ≤ 3/2
(√

b− a
)
ω
(
yj , [a, b], (b− a)/

√
N
)
.

Proof. Let x = (b−a)t+a, then as x varies from a to b, t varies from 0
to 1. Put yj(x) = yj((b−a)t+a), then yj(x) is bounded on [0, 1]. Using
Theorem 3.4 and Lemma 3.3, results in

∥yj − PN (yj)∥∞ ≤ 3/2 ω
(
yj , [a, b], (b− a)/

√
N
)
.

Since yj is bounded on [a, b], there exists M > 0 such that |yj(x)| ≤ M .
So,

∥yj∥2 =

√∫ b

a
|yj(x)|2dx ≤ M

√
b− a,

thus, we have ∥yj∥2 ≤
√
b− a∥yj∥∞. Since T∗(x)Aj is the best ap-

proximation to yj out of S and PN (yj) ∈ S, it is straightforward to
write

∥yj −T∗(x)Aj∥2 ≤ ∥yj −BN (yj)∥2 ≤
(√

b− a
)
∥yj −BN (yj)∥∞

≤ 3

2

(√
b− a

)
ω

(
yj , [a, b],

b− a√
N

)
.

□
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Lemma 3.6. Suppose that H = L2[a, b] be a real Hilbert space and func-
tion yj ∈ H is N + 1 times continuously differentiable, yj ∈ CN+1[a, b],
and S = span{T ∗

0 , T
∗
1 , ..., T

∗
N}. If T∗(x)Aj is the best approximation to

yj out of S, then a bound for the absolute error will be obtained by

∥yj −T∗(x)Aj∥2 ≤
M(b− a)N+ 3

2

(N + 1)!
√
2N + 3

.

Proof. Suppose that s ∈ S, the N -th Taylor polynomial of yj(x) ex-
panded around x = a is

s(x) =
N∑

n=0

y
(n)
j (a)

(x− a)n

n!
,

in addition we have

|yj(x)− s(x)| ≤
∣∣∣y(N+1)

j (ξ)
∣∣∣ (x− a)N+1

(N + 1)!
,

where ξ ∈ [a, b]. Since T∗(x)Aj is the best approximation to yj out of
S, one obtains

∥yj −T∗(x)Aj∥2 ≤ ∥yj − s∥2 =

√∫ b

a
|fj(x)− s(x)|2dx

≤

√√√√∫ b

a

(∣∣∣y(N+1)
j (ξ)

∣∣∣ (x− a)N+1

(N + 1)!

)2

dx ≤

√
M2(b− a)2N+3

[(N + 1)!]2(2N + 3)

=
M(b− a)N+ 3

2

(N + 1)!
√
2N + 3

.

These complete the proof. □
Due to this error bound, if N → ∞ we have

lim
N→∞

M(b− a)N+ 3
2

(N + 1)!
√
2N + 3

= 0,

and then, ∥yj −T∗(x)Aj∥2 → 0. These results confirm that the ap-
proximate solution T∗(x)Aj converges to the exact solution yj for j =
1, . . . , k.
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If we set Kf (x, γ) = [κfi,j,n(x, γ)], K
v(x, γ) = [κvi,j,n(x, γ)], Pn(x) =

[Pi,j,n(x)] and g(x) = [gi(x)] where i, j = 1, . . . , k, then system (1) can
be written in the following matrix form

n1∑
n=0

Pn(x)y
(n)(x) = g(x) +

∫ b

a

n2∑
n=0

Kf (x, γ)y(n)(γ)dγ

+

∫ x

a

n3∑
n=0

Kv(x, γ)y(n)(γ)dγ. (29)

Theorem 3.7. Assume that Ny(x) and y(x) are approximate and exact
solutions of Eq. (29) respectively, g(x) be a function defined on [a, b],
Kf (x, γ) and Kv(x, γ) are sufficiently smooth continuous and arbitrary
differentiable kernel functions. Then, we have

∥∥∥∥ n1∑
n=0

Pn(x)
(
Ny(n)(x)− y(n)(x)

)∥∥∥∥
∞

∥Ny(x)− y(x)∥∞
≤ n2(n2 + 1)

2
α+

n3(n3 + 1)

2
β,

(30)
where

α = supa≤x≤b

∫ b

a
Kf (x, γ)dγ, β = supa≤x≤b

∫ x

a
Kv(x, γ)dγ.

Proof. Substitiuting the approximate solution in Eq. (29) and some
simplifications, results in

∣∣∣∣∣
n1∑
n=0

Pn(x)
(
Ny(n)(x)− y(n)(x)

)∣∣∣∣∣ ≤
∫ b

a

n2∑
n=0

∣∣∣Kf (x, γ)
∣∣∣ ∣∣∣Ny(n)(γ)− y(n)(γ)

∣∣∣ dγ
+

∫ x

a

n3∑
n=0

|Kv(x, γ)|
∣∣∣Ny(n)(γ)− y(n)(γ)

∣∣∣ dγ.
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This implies that∥∥∥∥∥
n1∑
n=0

Pn(x)
(
Ny(n)(x)− y(n)(x)

)∥∥∥∥∥
∞

≤
∥∥∥Ny(n)(γ)− y(n)(γ)

∥∥∥
∞

[
n2∑
n=0

∫ b

a

∣∣Kf (x, γ)
∣∣ dγ +

n3∑
n=0

∫ x

a

|Kv(x, γ)| dγ

]

≤
∥∥∥Ny(n)(γ)− y(n)(γ)

∥∥∥
∞

(
n2(n2 + 1)

2
α+

n3(n3 + 1)

2
β

)
,

which shows that relation (30) holds and the proof is completed. □

4 Numerical experiments

In this section, some numerical examples are presented to justify the
efficiency of our method. Moreover, we compare the obtained approxi-
mate solution with the results of some other methods. In addition, we
will find the actual maximum absolute error as

ei,N =
∥∥yi,ex(x)− Nyi(x)

∥∥
∞ = max

{∣∣yi,ex(x)− Nyi(x)
∣∣ , a ≤ x ≤ b

}
, i = 1, 2, . . . , k.

Example 4.1. Consider the following system of linear FVIDEs{
−y′1(x) + y2(x) = 1 + x+ x2 +

∫ x
a (−y1(γ)− y2(γ)) dγ,

y′2(x)− y1(x) = −1− x+
∫ x
a (−y1(γ) + y2(γ)) dγ,

(31)

with the initial conditions y1(0) = 1, y2(0) = −1 and the exact solutions
y1(x) = x + ex, y2(x) = x − ex. Using Eq. (24) the augmented matrix
for the fundamental matrix equation can be written as

[W;G]

=



1/2 11/6 −1/6 21/10 3/2 −1/6 −1/2 1/10 11/6
1/6 0 77/30 0 1/6 1/3 −1/10 −1/5 1/3
−1/6 −17/30 1/18 737/210 −1/2 1/10 47/90 −19/210 −17/3
−1/10 0 −317/210 0 −1/10 −1/5 19/210 17/35 −1/5
−1/2 −1/6 1/6 1/10 −1/2 13/6 1/6 19/10 −3/2
1/6 −1/3 −1/10 1/5 −1/6 0 83/30 0 −1/6
1/6 1/10 −37/90 −19/210 1/6 −23/30 −1/18 155/42 1/2

−1/10 1/5 −19/210 −17/35 1/10 0 −71/42 0 1/10


.

From Eq. (25), the matrix form for initial conditions is

[U, µ] =

[
1 −1 1 −1 0 0 0 0 1
0 0 0 0 1 −1 1 −1 −1

]
.
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Thus, the new augmented matrix based on system (27) can be obtained
as follows
[
W̃; G̃

]

=



1/2 11/6 −1/6 21/10 3/2 −1/6 −1/2 1/10 11/6
1/6 0 77/30 0 1/6 1/3 −1/10 −1/5 1/3
−1/6 −17/30 1/18 737/210 −1/2 1/10 47/90 −19/210 −17/3
−1/10 0 −317/210 0 −1/10 −1/5 19/210 17/35 −1/5
−1/2 −1/6 1/6 1/10 −1/2 13/6 1/6 19/10 −3/2
1/6 −1/3 −1/10 1/5 −1/6 0 83/30 0 −1/6
1 −1 1 −1 0 0 0 0 1
0 0 0 0 1 −1 1 −1 −1


.

This linear system gives

A1 =
[
753436279
334342616

1805906557
1337370464

35327115
334342616

11776555
1337370464

]T
,

A2 =
[
−838209151

668685232 −234355939
668685232 − 70634565

668685232 − 5802545
668685232

]T
.

Substituting these elements in (5), result in

3y1(x) = 1 + 2.01389x+ 0.422615x2 + 0.28178x3,
3y2(x) = −1− 0.012085x− 0.42853x2 − 0.27768x3.

We compare the absolute error functions for different values of N in Figs.
1. In Tables 1 and 2, we list the results obtained by our method together
with the Bessel collocation method [28]. Tables 3 and 4 compare the ab-
solute error of this method with the method in [28]. The displayed
results show that our method is more accurate than the Bessel colloca-
tion method. This figures and tables confirm that the presented method
is able to approximate the solution of Eq. (31) with high a accuracy.

Table 1: Comparison of the absolute errors for N = 7, 10 of y1(x) in example

(4.1).

ADM [7] HPM [24] Method [28] Present method
xi |e1,7(x)| |e1,7(x)| |e1,7(x)| |e1,10(x)| |e1,7(x)| |e1,10(x)|
0 0 0 0 0 0 0
0.2 3.0e−09 3.0e−09 3.0530e−09 1.1569e−13 4.0901e−10 1.2179e−14
0.4 3.20e−07 3.20e−07 3.2758e−09 1.6609e−13 3.7285e−10 2.4096e−14
0.6 5.364e−06 5.364e−06 3.1170e−09 2.3115e−13 7.7633e−10 2.5423e−14
0.8 3.909e−05 3.909e−05 2.4377e−09 2.9798e−13 6.7835e−10 1.0266e−14
1 1.7986e−04 1.7986e−04 8.4851e−08 4.011e−12 7.5014e−11 4.4179e−16
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Figure 1: Comparison of the absolute error functions for system (31)
in example (4.1).

Table 2: Comparison of the absolute errors for N = 7, 10 of y2(x) in example

(4.1).

ADM [7] HPM [24] Method [28] Present method
xi |e2,7(x)| |e2,7(x)| |e2,7(x)| |e2,10(x)| |e2,7(x)| |e2,10(x)|
0 0 0 0 0 0 0
0.2 2.0e−09 2.0e−09 2.06810e−09 5.3069e−14 4.1272e−10 2.1809e−15
0.4 3.20e−07 3.20e−07 1.6889e−09 2.6645e−15 3.0724e−10 5.0023e−16
0.6 5.359e−06 5.359e−06 1.1459e−09 6.7946e−14 8.0102e−10 2.4265e−16
0.8 3.9028e−05 3.9028e−05 2.0071e−10 1.6120e−13 4.7211e−11 1.0653e−14
1 1.79279e−04 1.79279e−04 8.8759e−08 4.8770e−12 5.2146e−10 2.2325e−15

Table 3: The actual maximum error |e1,N | for system (31) in example (4.1).

N 3 5 7 8 10 12

Our method 9.0605e−04 1.7354e−06 2.3302e−09 5.1536e−11 2.9185e−14 6.1062e−16
Method [28] 7.1428e−03 3.3569e−05 3.3569e−05 3.2950e−09 7.9e−10 7.9e−10

Table 4: The actual maximum error |e2,N | for system (31) in example (4.1).

N 3 5 7 8 10 12

Our method 8.3527e−04 1.7096e−06 1.8470e−09 5.1753e−11 2.9282e−14 4.996e−16
Method [28] 7.7408e−03 3.5526e−05 8.8769e−08 3.5872e−09 8.0e−10 1.0e−11
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Example 4.2. Let

g1(x) = 3 sin(x)(x− 1) + cos(x)(2− 2cos(1)− 2sin(1) + 0.5x)

− 0.05x2sin2(1)− 0.5 sin(x)cos2(x),

g2(x) = − cos(x)(x+ sin(1)cos(1)) + 0.5x2sin2(1)− sin(x)(1 + 0.5x)

− 0.5 sin2(x) cos(x) + x,

and consider the following system of linear FVIDEs

{
y′′1 (x)− 3xy′2(x)− 2y1(x) = g1(x) +

∫ b
a k1(x, γ)dγ +

∫ x
a k2(x, γ)dγ,

y′′2 (x)− 2xy′1(x) + xy2(x) = g2(x) +
∫ b
a k3(x, γ)dγ +

∫ x
a k4(x, γ)dγ,

(32)

where k1(x, γ) = 2γ cos(x)y′1(γ)−x2 sin(γ)y′′2(γ), k2(x, γ) = x cos(γ)y1(γ)−
xsin(γ)y′1(γ) + cos(x) sin(γ)y′2(γ), k3(x, γ) = x2 cos(γ)y′′1(γ) + 2 cos(x)
sin(γ)y′2(γ) and k4(x, γ) = sin(x) cos(γ)y′1(γ)−γ cos(x)y′2(γ)+γ sin(x)y′′2(γ)
with the initial conditions y1(0) = 0, y′1(0) = 1, y2(0) = 1, y′2(0) = 0
and the exact solutions y1(x) = sin(x), y2(x) = cos(x). Applying the
presented scheme, we obtain the approximate solutions of Eq. (32) for
different values of N . We compare the absolute error functions for dif-
ferent values of N in Figs. 2. The results of the proposed method for
this example are exhibited in Table 5 and 6 with various choices of N .
In Table 7, 8, the actual maximum absolute errors are compared with
the method in [28]. One can observe that, our method is more effective,
because for the same N , it obtains better results.

Table 5: Comparison of the absolute errors for N = 3, 6, 9 and 12 for y1(x) in

system (32).

N
xi 3 6 9 12
0 0 0 0 0
0.2 6.1960e−04 2.5636e−08 7.4218e−14 2.5054e−14
0.4 1.9490e−03 1.0421e−07 2.0634e−11 3.2062e−14
0.6 3.4779e−03 2.4438e−07 7.1539e−11 3.5908e−13
0.8 5.3152e−03 4.7406e−07 1.8320e−10 2.6843e−13
1 8.4668e−03 4.7406e−07 4.1209e−10 3.5147e−13
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Figure 2: Comparison of the absolute error functions for system (32)
in example (4.2)

Table 6: Comparison of the absolute errors for N = 3, 6, 9 and 12 for y2(x) in

system (32).

N
xi 3 6 9 12
0 0 0 0 0
0.2 8.9762e−04 9.3542e−09 7.9332e−11 3.3406e−14
0.4 2.1817e−03 5.4030e−08 7.7096e−10 1.0844e−14
0.6 2.8996e−03 1.5024e−07 7.1717e−10 4.7037e−14
0.8 3.5623e−03 3.4352e−07 6.0038e−10 3.4863e−13
1 5.9927e−03 7.3350e−07 3.5963e−10 8.8140e−13

Table 7: The actual maximum error |e1,N | for system (32) in example (4.2).

N 3 6 9 12 14

Our method 8.4668e−03 8.7364e−07 5.1781e−10 7.6195e−13 5.3674e−16
Method [28] 5.8286e−02 5.3095e−05 8.3560e−09 8.3560e−09 3.1242e−13

Example 4.3. Consider the following nonlinear Fredholm-Volterra integro-
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Table 8: The actual maximum error |e2,N | for system (32) in example (4.2).

N 3 6 9 12 14

Our method 5.993e−03 5.993e−03 1.408e−10 9.8133e−13 1.0152e−16
Method [28] 7.0965e−02 2.4116e−05 3.0543e−09 3.4644e−11 2.6368e−13

differential equation

y′(x) + 2xy(x) = g(x) +

∫ 1

0
(x− t)y(t)dt+

∫ x

0
(x+ t)[y(t)]3dt, (33)

where g(x) =
(
−2

3x+ 1
9

)
e3x + (2x+1)ex +

(
4
3 − e

)
x+ 8

9 and the initial
condition y(0) = 1. The exact solution is y(x) = ex. By applying our
method, the approximate solutions of the problem for various values of
N will be obtain as follows

2y(x) = 0.83990x2 + 0.87007x+ 1, 3y(x) = 0.27871x3 + 0.42592x2 + 1.01316x+ 1,
4y(x) = 0.06953x4 + 0.14057x3 + 0.50911x2 + 0.99906x+ 1, . . . .

One can see that by increasing the amount of N , the Taylor series
expansion of ex will be achieved. Hence, the results of absolute error
function for N = 3, 4, 7 and 9 are depicted in Fig. 3. In Table 9, we tab-
ulate the maximum absolute errors for N = 7, 10 and 26. In this Table,
our results are also compared with the results of the reproducing kernel
Hilbert space (RKHS)[2] , the Taylor [16] and the collocation methods
[26]. It is observe that the results obtained by the presented method are
better than those of other methods. Moreover, these results confirms
that with increasing the amount of N , the error will be decreased.

Table 9: Comparison of the actual maximum error |eN | for system (33).

x Method in [2] Method in [16] Method in [26] Our method
N=26, n=1 N=7 N=7 N=7 N=9

0 0 0 0 0 0
0.2 1.51514e−06 1.8156e−09 3.4184e−07 6.1619e−10 1.6838e−14
0.4 3.85161e−06 1.3355e−09 6.0236e−07 3.1782e−12 9.8516e−15
0.6 7.06648e−06 1.0530e−09 8.9961e−07 8.5397e−11 1.8006e−14
0.8 1.13514e−05 1.0261e−09 1.0715e−06 6.2825e−10 1.6482e−14
1 1.72540e−05 9.1675e−08 4.2846e−07 1.4178e−09 1.5138e−14



76 ESMAIL HESAMEDDINI AND MOHSEN RIAHI

0 0.2 0.4 0.6 0.8 1
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

x

E
rr

or

 

 

e
1,3

(x) e
1,4

(x) e
1,7

(x) e
1,9

(x)

Figure 3: Comparison of the absolute error function for system (33)

Example 4.4. [11, 12] Consider the following nonlinear system of Volterra-
Fredholm integral equations

y1(x) = g1(x) +

∫ x

−1
(t2 − x)y1(t)dt+

∫ 1

−1

(
xt2y1(t) + x(t+ 1)y22(t)

)
dt,

y2(x) = g2(x) +

∫ x

−1
2y2(t) +

∫ 1

−1
3xy21(t)dt,

where g1(x) = −x4

4 + 5
6x

3 − x2 − x
10 − 5

12 and g2(x) = −2
3x

3 + 2x2 −
9x − 5

3 . By choosing N = 2 and applying the proposed approach for
this problem, the fundamental system of equations will be built. With
solving this nonlinear algebraic system, one obtain

A1 =
[
−1 1 0

]T
, A2 =

[
1
2 −1 1

2

]T
.

Substituting these matrices in Eq. (5), the numerical solutions will be
determined as 2y1(x) = x − 1 and 2y2(x) = x2 − x, which coincide
with the exact solution. In references [11] and [12] the authors obtained
approximate solution for this system by using Chebyshev collocation,
Bernstein polynomials and the hybrid Bernstein Block-Pulse functions
methods, whereas, we obtained the exact solution.



SHIFTED CHEBYCHEV POLYNOMIAL METHOD FOR... 77

5 Conclusion

In this paper, we have applied the shifted Chebyshev Galerkin technique
for the numerical solution of systems of linear and nonlinear FVIDEs
which includes the derivatives of the unknown functions in integral parts.
Furthermore, we have presented error estimation for the mentioned sys-
tems. Mathematical analysis about the numerical errors and conver-
gence were also discussed. To show the performance of error estimation
for the proposed method, we applied the presented scheme to several
examples. The numerical results showed that the method employed in
this work was valid and could be used as a very accurate algorithm
for solving the linear and nonlinear FVIDEs. Moreover, these satisfac-
tory results revealed that the proposed method was more powerful with
respect to some other well-known methods. In addition, this method
should be developed with some modifications for solving systems of par-
tial differential equations.
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