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Abstract. The numerical range of a simple graph G, named F(G), is
the numerical range of its adjacency matrix A(G). The main purpose
of this paper is to approximate F(G). Then, using this approximation,
bounds for the largest and the smallest eigenvalues of G are proposed. In
fact, lower bounds for the largest eigenvalues of G are presented in terms
of disjoint induced subgraphs of G and the numerical range of the square
of A(G).
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1. Introduction

All graphs considered here are simple and undirected. A graph can be
represented in various forms. Adjacency matrix is one of the various
representations of a graph. The adjacency matrix of a graph G with
vertex set V(G) = {v1,..., v, }, written A(G), is the n-by-n matrix in
which entry a;; is the number of edges in G with endpoints {v;, v;}. So
A(G) is Hermitian with entries 0 or 1 and Os on the diagonal. The
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eigenvalues of a graph G are the eigenvalues of A(G). There have been
many papers published on the eigenvalues of graphs. A series of articles
in graph eigenvalues were collected by Stanic in [8].

The classic numerical range or simply numerical range F(.) is a set
of complex numbers naturally associated with a given n-by-n matrix
A. The numerical range of a Hermitian matrix is an interval dependent
on its largest and smallest eigenvalues. See [3, 4] for more properties
of the numerical range of matrices. Nakazato [7] tried to determine the
numerical range of adjacency matrix of some directed graphs. It is the
result obtained by Marcus and Pesce [6] that the numerical range of any
n-square matrix A is the union of the numerical ranges of all 2-square
real compressions of A.

In this paper, the researchers have changed their view on the eigenvalues
of graphs compared to what has been done so far. They have looked at
the largest and smallest eigenvalues of graphs in terms of the numerical
range of graphs. The researchers propound a subset for the numerical
range of graphs by Marcus and Pesce theorem. This subset gives a lower
bound for the largest eigenvalues and an upper bound for the smallest
eigenvalues of G solely based on structural properties of the graph. In
addition, by applying Marcus and Pesce theorem to the square of the
adjacency matrix of G, a new lower bound for the largest eigenvalues of
the graph is obtained.

2. Preliminaries

This section is divided into two parts. In the first part, familiarity with
the basic theory of graphs is assumed. The second part presents the
numerical range of a matrix and some of the related objects.

First, we recall a few basic notions of graphs which can be found in
[9]. Let G be a graph with vertex set V(G). When T C V(G), the
induced subgraph G[T] consists of T and all edges whose endpoints are
contained in T.

The following theorems determine the eigenvalues of bicliques, complete
graphs, cycles and paths thoroughly.
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Theorem 2.1. ([9]) The eigenvalues of complete graph K, are \; =

n—1>X =X3=---= X\, = —1 and the eigenvalues of the biclique
K,n’s are)q:\/7“>S>)\2:)\3:---:)\n,1:0>)\n:—\/7’>s.
2km

Theorem 2.2. ([1]) For n > 2, the eigenvalues of C,, are 2cos—,
n

k=1,..,n. Also, for n > 1, the eigenvalues of P, are 2cos
k=1,..,n.

n+1’

We follow three theorems about bounds of the largest eigenvalue of a
graph G and a theorem about its subgraph G—e. Let d; is the degree of
vertex v; and A(G) = max,,cq d;.

Theorem 2.3. ([9]) If G is a graph with n vertices, e edges and eigen-
values A\1 = Ag = -+ = A\, then (2¢/n) < A1 < A(G).

Theorem 2.4.

([1]) If G is a graph with n vertices, e edges and eigen-
values \1 = g = -

<+ = A\, then A1 < /2e(n—1)/n.

Theorem 2.5. ([5]) If G is a graph with n > 2 vertices, then

1

where c;; is the number of common neighbors of vertices v; and v;.

Theorem 2.6. ([2]) If e is an edge of a connected graph G, then the
largest eigenvalue of G is strictly greater than the largest eigenvalue of
G —e.

Now, suppose that M, is the algebra of all n x n complex matrices, then
the field of values or numerical range of A € My, is

F(A) = {x"Ax:x e C", x"x = 1}.

If A is Hermitian, then F(A) is an interval whose endpoints are the
largest and the smallest eigenvalues of A. If Aq,...,A,, € M,, then
FO i Ay) €37 F(Ag). For all A € M,,, and B € M,,,, F(A &
B) = Co(F(A) UF(B)). For more details of matrix theory and the nu-
merical range of matrices, one may refer [3, 4]. As a final result, consider
the interlacing eigenvalues theorem for bordered matrices.
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Theorem 2.7. ([3]) Let A € M, be a given Hermitian matriz with
etgenvalues A1 = Ao = -+ = Ay, and let y € R™ be a given vector. Let
A € M1 be the Hermition matriz as follows:

X A |y
A=|—-——— | ——-
y"o] 0
Let eigenvalues ofA be 5\1 > 5\2 > > Apy1- Then

3. Numerical Range of Graphs

In this section, we present the numerical range of a graph G and some
of its properties.

Definition 3.1. If G is a graph, F(G) is the numerical range of the
adjacency matriz of G i.e. F(G) = F(A(G)).

Theorem 3.2. Two isomorphic graphs have the same numerical range.

Proof. Suppose G is isomorphic to H, i.e. G = H, so there exists a
permutation matrix P such that A(G) = P~'A(H)P. Therefore G and
H have both the same eigenvalues and the same numerical range. [

The next corollary is an immediate result of Definition 3.1 since A(G)
is Hermitian.

Corollary 3.3. If G is a graph with n vertices and eigenvalues \y >
Ao =+ = Ay, then F(G) = [\, \1].
The following example follows from Corollary 3.3, Theorem 2.1 and 2.2.
Example 3.4. F(K,,) = [-1,n — 1] and F(K, ) = [—+/rs, /Ts].

2
F(P,) = [—2008(711 1), QCos(ni 1)] and F(C,) = [2603(Lnj %), 2],

2
where the floor |x| of = is the largest integer at most x.
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Corollary 3.5. Let G be a graph with n vertices and eigenvalues \1(G) >
A2(G) = -+ 2 M(G) and let H be an induced subgraph of G with p ver-
tices and eigenvalues \i(H) > Ao(H) > -+ > A\,(H). Then \(G) >
AM(H) and M\ (G) < \p(H) and so F(H) C F(G).

Proof. A(H) is a principle submatrix of A(G) and so A\ (G) > A\ (H)
and \,(G) < \p(H). O

Note that if H is a subgraph of G that is not an induced subgraph,
then Corollary 3.5 is not always true, although Theorem 2.6 and 2.7
say A\1(H) < A\ (G). For example, P3 is a subgraph of C3 but F(P3) =
[—v2,v2] and F(C3) = [-1,2].

Next corollary provides two bounds for the numerical range of a graph
depending only on n, e and A.

Corollary 3.6. Let G be a graph with n vertices, e > 1 edges and
eigenvalues A\ = Xo > -+ > A\, Also suppose that

v = min{A(G),/2¢e(n — 1)/n}

and
o =mazx{(2¢e/n),\/A(G)}

then
[_171} - [_170] - F(G) - [_’Yaf)/]'

Proof. Let H be an induced subgraph of G which contains exactly two
incident vertices. So H is a path with two vertices and by Theorem 2.2,
F(H) = [-1,1]. Now, by Corollary 3.5, [-1,1] = F(H) C F(G). Clearly
A(G) > 1 and K; 5(g) is a subgraph of G and A1 (K a(g)) = VA(G) <
M (G) by Theorem 2.1. Therefore, by Theorem 2.3, \{(G) > o and
[—1,1] C [-1,0] € F(G). The third inclusion follows from Theorem 2.3
and 2.4. O

Remark 3.7. If G has m components, Hi,Ho,--- . H,,, then each
component is an induced subgraph of G and the adjacency matriz of
G can be written as A(G) = A(Hy) ® A(Hg) @ --- @ A(H,,), so



26 M. TAJARROD AND T. SISTANI

F(G) = Co(F(H,)) UF(Hy) U ---UFH,,)). By Corollary 3.6 for all
j€{1,...,m}, F(H;) is an interval which contains 0, so

Co(F(H;)UF(Hy)U---UF(H,,)) = FH;) UFHy)U---UF(H,,).
Therefore, for each j € {1,...,m}, if I; is an interval such that 1; C

F(H;), then UI; C F(G).

Beineke and Wilson [2] proved that if G is neither complete nor null,
then A\,(G) < —v/2. In the next theorem, we aim to extend this result
as far as possible and obtain a better upper bound for A,.

Theorem 3.8. If G is an n vertices graph with the star Ky, as an
induced subgraph, then A\, < —v/m. In particular, [—/m,/m | C F(G).

Proof. It follows from Theorem 2.1 that —y/m and y/m are the smallest
and the largest eigenvalues of Ky ,,,. Now, by Corollary 3.5, the result is
clear. [

Theorem 3.9. If G is a graph with n vertices and eigenvalues A1 =
Ao = -+ = Ay, then there exists a positive integer m < n such that

{2(;03({’;?2),2} CF(G),

or

[—2005( ”1),2(;08( T )}QF(G).

m + m—+1

Proof. If G has no cycle, then consider P,, as a path in G that is not
contained in a longer path; called a maxzimal path. Since G has no cycles,
P,, is an induced subgraph of G and by Corollary 3.5, F(P,,) C F(G).
Now, by Theorem 2.2,

™

- fl), 2cos(

)| CF(G).

2
cos( m+1’] =

m T

=|-2 2
m+1)} [ cos( o 57) 2e0sl
Otherwise, G contains a cycle C,, which is an induced subgraph of G
and m > p for all the cycles C, that are induced subgraphs of G. By
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Corollary 3.5, F(C,,) C F(G). Similar to the previous case, by Theorem
2.2

[2cos(L7;Ji:),2} CFG). O

Applying the decompositions of graphs, we obtain an upper bound for
F(G) in continuation of this section.

Theorem 3.10. Let H = {G1,Ga,...,Gr} be a decomposition of an
n-vertices graph G such that G; is n-vertices subgraph of G and \;, >
Nig = -+ = N, are the eigenvalues of G, for each i=1,....,k. Then

F(G) C [an, By, where agg = XK N, and B = S5 Ny

Proof. By the hypothesis that G; is an n-vertices subgraph of G for
each i=1,...k, A(G) = A(G;) + A(G,) + ... + A(G,). So

F(G) C F(G,) + F(G,) + ... + F(G,)
= [)\1”,)\11] + [)\QH,)\Ql] + ...+ [)\kn,)\kl]

k k
= [Z/\inaz)\zj] = oy, Bn]. O
=1 =1

Now, we have the following obvious corollary.

Corollary 3.11. Let Hi,Hsa, ..., Hm be m decompositions of G in the
same condition of Theorem 3.10. Then for every j=1,2,...,m, F(G) C

[aHj , BHJ.} , and so
m

F(G) C ﬂ [, B ] -
j=1
Remark 3.12. If G is a graph with e edges and H = {G1, Ga, ..., G.} is
a decomposition of G such that E(G,) NE(G) has exactly one member,
for each i € {1,2,...e}, then F(G,) = [-1,1] for all i € {1,2,...,e}
and by Theorem 3.10, F(G) C [—e, ¢e|. Now, without loss of generality,
suppose that G1,Go are two members of H such that their edges are
disjoint, i.e. their edges have distinct endpoints. So we can make a new
decomposition H' = {G'1, Gs, ..., G} such that G'1 is a subgraph of G
and E(G')) = E(G,) UE(G,). F(G',) = [-1,1] and by Theorem 3.10,

F(G) CF(G))+F(G;y)+..+F(G,) =[-(e—1),e—1],
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which is a superset of F(G) such that it is a subset of [—e,e]. Also,
without loss of generality, suppose that G, G, Gz are three members
of H such that every two distinct edges of E(G;) U E(G,) U E(G,)
have exactly one common endpoint. So the new n-vertices subgraph G’y
of G contains one copy of C3 and for the new decomposition H" =

{G'1,Gy, ..., Ge}, we have

F(G) CF(G))+F(G,)+..+F(G,)
Cl-L2]+[-L1]+---+[-1,1] =[-(e—2),e—1],

which again is a superset of F(G) such that it is a subset of [—(e — 1),e — 1].
Therefore for finding a superset of F(G) with smaller length it is enough
to concentrate on those decompositions that have the minimum number
subgraphs between all the decompositions of graph G. Additionally, de-
compositions whose subgraphs are disjoint edges, disjoint paths, disjoint
cycles, disjoint cliques or disjoint bicliques will attaine an interval with
a smaller length compair with those decompositions whose subgraphs are
not chosen in such a way.

Example 3.13. Consider the 3-regular graph G, as in Figure 1, and the
decomposition H = {G1, Gz} of G, as in Figure 2. By Theorem 3.10,
F(G) C [-1,2]+[-1,1] = [-2, 3] . In Example 4.4, it will be shown that
this decomposition identifies exactly F(G), in fact, F(G) = [-2, 3].

Vi V2

V3 V4

Vs V6

Figure 1. 3-regular graph G
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Vi V2 \;1 \;2
V3 V4 V3 V4
. °
Vs V6 Vs V6
G1 G2

Figure 2. Decomposition H of G

4. Main Results

In this section, we looked at the largest and smallest eigenvalues of
graphs in terms of the numerical range of graphs. Throughout this
section, it is supposed that G is a connected n-vertices graph with
n > 1. Also, V(G) = {v1,v2, ..., un }, d; is the degree of vertex v; and A
is the adjacency matrix of G.

M. Marcus and C. Pesce [6] showed that for each A € M,,,

F(A) = JF(As), (1)

where A, is the 2-square matrix

¥ Ax x*Ay] @)

Aary = [y*AfL‘ y*Ay

and z and y run over all pairs of real orthonormal vectors. The purpose
of the next theorem is to construct a subset of F(G). Since z and y are
real vectors and A(G), or simply A, is Hermitian,

3)

_ 2T Az 2T Ay
W et Ay yTAy)

The main result needs two lemmas in which 27 Az, 7 Ay and y” Ay
are introduced by induced subgraphs of G. In order to find the desired
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subset, special pairs of real orthonormal vectors are considered and an
induced subgraph of G is attributed to each vector.

Lemma 4.1. Let x = [x1,%2,...,x,])7 be a real vector such that for
1<ihi<ig <+ < i <0, xilzxi2:~-':xik:1/\/E and x; =0
when 1 < j < n and j ¢ {i1,ia,...,ix}. Then 7 Ax is 2/k times the
number of edges in the induced subgraph G[{vi,, vi,, ..., v, }|.

Proof. Without loss of generality, suppose that z = [1/V/k, ..., 1/@, 0,...,0]"

with exactly k nonzero coordinates. Then x! A simply is 1/vk times
a vector whose ith coordinate, for 1 < i < k, is the degree of v; in
G[{v1, v, ..., v; }] and its ith coordinate, for k+1 < ¢ < n, is the number
of edges incident v; and their other endpoints are in G[{v1,v2, ..., vk},

and finally 27 Az is 1/k times the sum of degree of vertices in G[{v1, va, ..., vy }].

Since the sum of degree of vertices in a graph is 2 times the number of
edges, the result will be followed. [

Lemma 4.2. Let x = [x1, 22, ..., 2|7 and y = [y1,y2, ..., yn]T be two real
vectors and § = {i1,i2,...,ik} and n = {j1,j2, ..., jm} be two subsets of
{1,..,n} such that ENn = 0. Let vy =z, = -+ = x;, = 1/Vk and
x; = 0 when i ¢ £ and also yj, = yj, = -+ = yj,, = 1/v/m and y; =0
when j & 1. Then 2T Ay is 1/\/% times the number of edges having one
endpoint in G[{v;,, vi,, ..., v, }| and the other in G[{vj,,vj,, ..., v, }].

Proof. Suppose x is identically the vector of the proof of Lemma 4.1
with exactly k nonzero coordinates. Also, y = [0, ...,0,1/y/m, ...,1/y/m]T
with exactly m nonzero coordinates. Since £ N1 =0, 7y = 0. 27 A can
be acquired like the proof of Lemma 4.1 and z¥ Ay is 1/ Vkm times the
number of edges having one endpoint in G[{vy, va, ..., v }] and the other
in G{vp—m+1,--yvn}]. O

Theorem 4.3. For each pair T, S C V(G) such that SNT = 0 and
n(T) = k and n(S) = m define By as 2/k times the number of edges
in the induced subgraph G[T|, Bs as 2/m times the number of edges
in the induced subgraph G[S] and ars as 1/vVkm times the number
of edges having one endpoint in G[T| and the other in GI[S]. Then
Uler,s,brs] C F(G), where
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(Br + Bs) — \/(ﬁT — 0s)% +4ag g

ar.s = 9 )
(Br + Bs) + /(Br — Bs)? + 4
brs = 5

and the union runs over all pairs of disjoint subsets T and S of V(G).

Proof. Without loss of generality, let T' = {v1, ..., v} and S = {vp—m+1, .o, Un }-
Now, consider two orthonormal vectors x,y € C" similar to the proof
of Lemma 4.2. Then by Lemma 4.1 and 4.2, fr = 2T Az, s = yT Ay,
ars = zT Ay. Then by (3),

Br ar S]
A, = '
v [OZT,S Bs
and a simple calculation,
F(Ayy) = [ar,s,brs] € F(G), (4)

by (1). The result is clear, since z and y are a special pair of orthonormal
vectors. [

In the next example, it will be tried to construct a subset of F(G) where
G is the graph of Example 3.13, by using the method of the previous
theorem.

Example 4.4. Consider the 3-regular graph G which was stated in
Example 3.13. Two choices of T" and S will be stated bellow and then
the related interval [ar,s,br ] will be calculated.

Case 1: If T = {v1,v4} and S = {vy,v3}, then Sy = 0, Bs = 0,
arg = 4/v/4 =2 and lars,brs] = [—2,2].

Case 2: If T = {2}1,03,1}5} and S = {02,04,1)6}, then Oy = 2, Bg = 2,
ars =3/v/9=1and [arg,brs] = [1,3].

Finally by using Theorem 4.3, [-2,2]U[1,3] = [-2,3] C F(G). Thus by
Example 3.13, F(G) = [-2,3].

Example 4.5. Let G and H be the graphs shown in Figure 3. Choose
T and S for G in the two following ways:
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Case 1: If T = {v1,v9,v4} and S = {ws}, then By = 2, Bg = 0,
arg =1/V3 and [aps,brs] = [1—2/V3,1+2/V3],

Case 2: If T = {v2,v3,v4} and S = {v1}, then fr = 2/3, s = 0
ar,s =3 and [ar,s, br,s] = [(1 — vV28)/3, (1 + v/28)/3].

Then [(1—+v/28)/3,1+2/V3] C F(G), Ai(G) > 2.154 and \,(G) <
—1.430. Also, by choosing T' = {wvy,v2,v5,v96} C V(H) and S =
{v3,v4} € V(H) we have 7 =2, fs =0 and ar g = 1/v/2. Therefore
[1-v6/2,1+6/2] CF(H). So A;(H) > 2.224 and \,(H) < —2.224,

since A, = —\1 in bipartite graphs. By calculating of all cases of T" and
S, it can be seen that the bounds obtained in this remark are the best
possible ones, based on Theorem 4.3.

Remark 4.6. For each pair T, S C V(G) such that TNS =0, [ar,g,br 5] C

F(G) as stated in the proof of Theorem 4.3. LetJ [ar.s,br,s] = [ar, 5, b1y,55]
where ar, s, = min args and by, s, = max by s and the union, the
minimum and the mazximum run over all pairs of disjoint subsets of

V(G). We can consider ar s and br,s as two functions with three vari-
ables Br, Bs and ar,s. Naturally, for each T C V(G),

0< Br< M
n—k
and
0<ars <y/I5)n =5,

where e is the number of edges of n-vertices graph G, k is the maximum
size of an independent set of vertices of degree 6 = min,,cq d;. How
to choose T' and S, is important to achieve ar, s, and br, s,. The next
corollary suggests a usefull choice to obtain a lower bound for A1 based
on the graph indices which are easily accessible.
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Vi V2 V] V2 V3

V3 V4 V4 V5 Ve

Figure 3. Graphs G and H

Corollary 4.7. Let G be a graph with n vertices and e edges such that
6= minviec; di. Then

(e — k&) + /€2 — kd(2e — nd)

A= )
! n—k

where k is the mazimum size of an independent set of vertices of degree

J.

Proof. Recording to the preamble of Remark 4.6, let T" be a set of
independent vertices of degree § with n(T") =k and S = V(G) —T. So

2Ne —
n(S) =n—k. So B =0, Bs = (e_];j), arg = kié Therefore

k(n—k

(e — kd) +Ve2 — 2kes + nké?
brs = . . O
/”L —

The next corollary results from Corollary 4.7. Recall that a leaf is a
vertex of degree 1.

Corollary 4.8. If T is an n-vertices tree with n > 1 and k leaves, then

(n—Fk—1 +\/ Dn—1)+k

AL >
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In Theorem 4.10, we aim to present a lower bound for A; by replacing
A? instead of A in Theorem 4.3. Naturally, we can use Theorem 4.3 for
AF where k > 1, but, as mentioned in Remark 4.6, our aim is to find
a lower bound for A\; and an upper bound for A, based on structural
properties of graph G and the results for A¥ where k > 3, are not clear
in comparison to AZ.

Again, to get the main result, we need two lemmas. Let A% = [cij], then
ci; is the degree of vertex v;, called d;, and c¢;; is the number of common
neighbors of vertices v; and v; when 7 # j. Clearly A2 is symmetric.

Lemma 4.9. Let x, y, £ and n are defined in the same way as Lemma

4.2, then
1
T A2.. . ..
x A%x = E(Zdz—i-QZ Cij)s
1€€ 1,JEE
and 4
T A2
Tz A Yy =—F ch‘j.
VEkm ict
Jjen

Proof. Like the proof of Lemma 4.1, without loss of generality, suppose

that = = [1/Vk,...,1/Vk,0,...,0]7 with exactly k nonzero coordinates.

Then 2T A? simply is 1/ Vk times a vector whose jth coordinate, for

1<j<k, isd;+ Z%l ¢;j and its jth coordinate, for k+1 < j < n, is
i#j

Zle cij. The result will be followed similar to the proof of Lemma 4.1
and 4.2. [0

Theorem 4.10. For each pair T, S C V(G) such that SNT = ( and
n(T) =k and n(S) = m, define

1 1
Br=2(_di+2 >, cy) Bs=7(0D di+2 ) cy),
v; €T ’Ui,’UjET v, ES ’Ui,UjES
and 1
arg = \/ﬁ Z Cij-

v, €T
’UjES
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Then

(B + 85) + /(B — B2 + 403

A1 = \| maxr g 5

Proof. Without loss of generality, let T = {vq,...,vx} and S = {vp—m+1, ..., Un }-
Now, consider two orthonormal vectors x,y € C" similar to the proof
of Lemma 4.2. Then by Lemma 4.9, 8, = 27 A%z, gy = yT A%y and
O‘éns = 27 A%y. Then by (3) and similar to the proof of Theorem 4.3,

(B + 85) + /(8 — B5)2 + 405
. .

In particular, if ' = {v;} € V(G) and S = {v;} C V(G) where i # j,
then the inequality of Theorem 2.5 is a consequence of Theorem 4.10.

M > maxr g

The next theorem is another application of Marcus and Pesce theorem to
obtain a subset of F(G) and consequently a lower bound and an upper
bound for A; and Ao, respectively. Let w; be a arbitrary positive real
number, called weight, corresponding to vertex v; for each i = 1,...,n.

Theorem 4.11. Let T, S C V(G) such that SNT = (. For each 1 <
i, < n, let

o — wiw; if v;is adjacent to v;
K 0 if v; is not adjacent to v;.
Now, define
2 v et €il 2 0 0;€8 Cid Y vieTo;es Cis
ﬁT:ﬁ, ﬁszﬁ, ars = > =
wer U wes U] Ve wd)(Eesv?)

Then Jlar,s,brs] C F(G), where

(Br + Bs) — \/(5T — Bs)? +4a7 g
2 )

(Br + Bs) + \/(ﬂT — 0s)? +4ag g
2 )

ar,s =

brs =
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and the union runs over all pairs of disjoint subsets T and S of V(G).
Also A\ = br s and A, < at,s for each disjoint pair of T and S.

Proof. For 1 <i < n, let

% v; € T
_ ZvieT w;
€Ty =
0 v; Qé T
and ws
- wueS
o ZUZ‘ES Wy
Yi =
0 (Y ¢ S.

Also x = [x1, 72, ...,z,]T and y = [y1,¥2, ..., yn]?. Corresponding to the
proof of Theorem 4.3, Br = 2T Az, fs = y! Ay and ars = T Ay and
the result is clear. O

Remark 4.12. In Theorem 4.11, if G is a regular graph, Theorem 4.3
and 4.11 are identical and if w; = 1 for each 1 < ¢ < n, then the results
of Theorem 4.3 will be obtained. We can replace by d;, t; = ij’ d;(
called 2-degree of vertex v;), Ny =3, ;tj or My =3,
means v; is adjacent to v;. If G and H are the graphs Mentioned in

N; where j ~ i

Ezample 4.5 and T is the set of all vertices whose degrees are A(G) and
S =V(G)—T, then we have the followig results:

i) Taking w; = d;, we have A\ (G) > 2.16935 and A1 (H) > 2.24536.

ii) Taking w; = t;, we have \1(G) > 2.16842 and \;(H) > 2.24600.

iii) Taking w; = N;, we have A\1(G) > 2.16935 and A\ (H) > 2.24693.
iv) Taking w; = M;, we have \1(G) > 2.16977 and A1 (H) > 2.24696.

Remark 4.13. Note that Theorem 4.11 is more general than what was
mentioned in Remark 4.12. In fact, for a fixed pair of disjoint subsets of
V(G), the list of weights provides a list of bounds for A; and A,.
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