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1. Introduction

Ordered normed spaces and cones have many applications in applied
mathematics. Hence, fixed point theory in K-metric and K-normed spaces
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was developed in the mid-20th century (see [7, 21]). In 2007, Huang and
Zhang [11] reintroduced such spaces under the name of cone metric
spaces by substituting the set of real numbers by an ordered normed
space and obtained some fixed point results. Topological vector space-
valued version of these spaces was treated in [9, 13] (see also the ref-
erences contained therein). On the other hand, the concept of b-metric
space (or metric-type space) was studied by Bakhtin [2] and Czerwik
[6]. Then analogously with definition of a b-metric space, Cvetkovié et
al. [b] defined cone b-metric spaces or (cone metric-type spaces) and
proved several fixed and common fixed point theorems. Also, topologi-
cal vector space-valued version of this concept was defined in [10].

In 1996, Kada et al. [15] introduced the concept of w-distance in metric
spaces, where nonconvex minimization problems were treated. Further,
Cho et al. [4] defined the concept of c-distance which is a cone version
of the w-distance. Then some fixed point results under w-distance in
metric spaces and under c-distance in cone metric spaces and tvs-cone
metric spaces were proved in [8, 16, 17, 20] (see also the references cited
therein). Recently, Hussain et al. [12] defined the concept of wt-distance
on a b-metric space and proved some fixed point theorems under wi-
distance in a partially ordered b-metric space. Also, very recently, Bao et
al. [3] defined generalized c-distance in cone b-metric spaces and obtained
several fixed point results in ordered cone b-metric spaces.

In the present work, generalized c-distance in the framework of tvs-cone
b-metric spaces is introduced and fixed point and common fixed point
results for mappings in tvs-cone b-metric spaces are proved under con-
tractive conditions expressed in the terms of generalized c-distance with
the underlying cone which may be not normal. Respective results con-
cerning mappings without periodic points are also deduced. Examples
are given to distinguish these results from the known ones.

As an application, sufficient conditions are obtained for the existence of
solution for a system of Fredholm integral equations.
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2. Preliminaries

Let E be a real Hausdorff topological vector space (tvs for short) with
the zero vector 6. A proper nonempty and closed subset P of F is called
a coneif P+ P C P, A\P C Pfor A\ >0and PN (—P)={6}. Given a
cone P C FE, we define a partial ordering < with respect to P by z <y
if and only if y — x € P. We shall write x < y if x < y and x # y. Also,
we write x < y if and only if y — x € int P where int P is the interior of
P. If int P # (), then the cone P is called solid. The pair (F, P) is an
ordered topological vector space.

For a pair of elements x,y € E such that z <y, put [x,y] = {z € E :
r =z =X y}. A subset A of E is said to be order-convex if [z,y] C A,
whenever z,y € A and z < y. Ordered topological vector space (E, P)
is order-convex if it has a base of neighborhoods of § consisting of order-
convex subsets. In this case, the cone P is said to be normal. If F is a
normed space, this condition means that the unit ball is order-convex,
which is equivalent to the condition that there is a number K such that
z,y € E and 0 < z <y imply that ||z| < K]||y||.

Theorem 2.1. ([19]) If the underlying cone of an ordered tvs is solid
and normal, then such tvs is an ordered normed space.

Definition 2.2. Let X be a nonempty set, (E, P) be an ordered tvs and
s =1 be a real number. A function d: X x X — FE is called a tvs-cone
b-metric and (X,d) is called a tvs-cone b-metric space if the following
conditions hold:

(d1) 0 =2 d(z,y) for all z,y € X and d(x,y) = 0 if and only if x = y;
(dQ) d(%,y) = Cl(y,éﬂ) fOT all T,y € X;'
(d3) d(z,2) =2 s(d(z,y) +d(y,2)) for all z,y,z € X.

Obviously, for s = 1, tvs-cone b-metric space is a tvs-cone metric space
in the sense of [9]. If we replace E by a real Banach space in Definition
2.2, we get the cone b-metric space in the sense of [5]. It is evident
that Definition 2.2 coincides with the definition of b-metric spaces if we
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replace E¥ by the set of real numbers and P by the set of nonnegative
real numbers.

In the sequel, E will always denote a topological vector space, with the
zero vector 6 and with order relation <, generated by a solid cone P.
For notions such as convergent and Cauchy sequences, completeness,
continuity etc. in tvs-cone b-metric spaces, we refer to [5, 10]. Also, we
shall make use of the following properties when the cone P may be
nonnormal.

(p1) fu,v,we E,u<vand v < w then u < w.
(p2) If u € E and 0 < u < ¢ for each ¢ € int P then u = 6.

(p3) Ifup,vp,u,v € E,0 < u, = v, foreachn € N, and u,, — u, v, — v
(n — 00), then 6 < u < v.

(pa) If 2,z € X, up, € E,d(xy,2) < u, and u, — 0 (n — o0), then
Ty — x (N — 00).

(ps) If w = Au, where u € P and 0 < A < 1, then u = 6.

(pe) If ¢> 6 and u,, € E,u, — 0 (n — 00), then there exists ng such
that u,, < ¢ for each n > ng.

In the following definition, we extend the concept of generalized c-
distance in cone b-metric spaces (introduced by Bao et al. [3]) to the
setting of tvs-cone b-metric spaces.

Definition 2.3. Let (X, d) be a tvs-cone b-metric space with parameter
s> 1. A function ¢ : X x X — FE is called a generalized c-distance on
X if the following properties are satisfied:

(q1) 0 <X q(z,y) for all x,y € X;

(q2) q(x,2) 2 slq(z,y) + q(y, 2)] for all z,y,z € X;

(g3) for x € X and a sequence {y,} in X, converging toy € X, if
q(z,yn) = u for some u = uy and alln > 1, then q(x,y) = su;
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(qa) for all ¢ € E with 0 < c, there exists e € E with 0 < e such that
q(z,x) < e and q(z,y) < e imply d(z,y) < c.

Remark 2.4. Each wt-distance in a b-metric space (in the sense of
Hussain et al. [12]) is a generalized c-distance in the tvs-cone b-metric
space (X,d) with E =R and P = [0,00). Indeed, only property (q3) has
to be checked. Let y, € X, y, — y (n — o0) in the tvs-cone b-metric d,
and let q(x, yn) < uy € [0, +00). Since q is (as a wt-distance) lower semi-
continuous, we have that q(z,y) < linnlgf sq(z,yn) < linnliorolf SUy = Sy,
ice., q(x,y) < suy holds true. But the converse does not hold. Thus,
generalized c-distance is a generalization of wt-distance. Also, for s =
1, generalized c-distance is a c-distance of [4]. In this manner, if we
consider E = R and P = [0,00), then we obtain the definition of w-
distance introduced by Kada et al. [15].

Now, we give some examples in the framework of tvs-cone b-metric spaces.

Example 2.5. Let (X,d) be a tvs-cone b-metric space such that the
metric d(+,-) is a continuous function in second variable. Then, ¢(x,y) =
d(x,y) is a generalized c-distance. Indeed, only property (g3) is nontrivial
and it follows from ¢(z,y,) = d(x,y,) =< u, passing to the limit when
n — oo and using continuity of d.

The following two examples are variations of the examples from paper
[3] adjusted to the case of a tvs-cone b-metric.

Example 2.6. Let (X,d) be a tvs-cone b-metric space and let u € X
be fixed. Then ¢(z,y) = 1d(u,y) defines a generalized c-distance on
X. Indeed, (q1) and (g3) are clear. Also, (g2) follows from sq(z,z) =
sd(u,z) = s*(d(u,y) +d(u, 2)), ie., ¢(z, 2) = sq(z,y) + sq(y, z). Finally,

(qa) is obtained by taking e = 55

252"

Example 2.7. Let E = C}[0, 1] with the norm ||z|| = ||z s+ ||2'||c and
consider the nonnormal cone P = {z € E : z(t) > 0 on [0,1]}. Also, let
X =[0,00) and define a mapping d : X x X — E by d(z,y) = |z —y|*¢
for all 7,y € X, where s € {1,2} and ¢ : [0,1] — R is given as ¢(t) = 2.
Then (X,d) is a tvs-cone b-metric space with s € {1,2}. Define a
mapping ¢ : X x X — FE by q(z,y) = y®*¢ for all z,y € X. Then ¢
is a generalized c-distance.
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Example 2.8. Consider the Banach space F = Cg|0, 1] of real-valued
continuous functions with the max-norm and ordered by the cone P =
{f € E: f(t) > 0fort € [0,1]}. This cone is normal in the Banach-
space topology on E. Let 7* be the strongest locally convex topology on
the vector space E. Then, the cone P is solid, but it is not normal in
the topology 7*. Indeed, if this were the case, Theorem 2.1 would imply
that the topology 7* is normed, which is impossible since an infinite
dimensional space with the strongest locally convex topology cannot be
metrizable (see, e.g., [13]).

Let now X = [0, 4+o00) and d : X x X — (E,7) be defined by d(x,y)(t) =
|z — y|*¢(t) with s € {1,2} for a fixed element ¢ € P. Then (X,d) is a
tvs-cone b-metric space which is not a cone b-metric space in the sense
of [5]. We can introduce two c-distances on this space:

a(r,y)(t) =y°e(t), and gqa(z,y)(t) = (z° +y°)p(t).

They are examples of generalized c-distances in tvs-cone b-metric spaces
which are not generalized c-distances in cone b-metric spaces of [3].

These examples show that for a generalized c-distance ¢ in twvs-cone
b-metric spaces:

e g(x,y) = q(y, z) does not necessarily hold for all z,y € X;
e ¢(x,y) = 6 is not necessarily equivalent to z = y.

We will call a sequence {u,} in P a generalized c-sequence if for each
¢ > 0 there exists ng € N such that u,, < ¢ for n > ng. It is easy to show
that if {u, } and {v,, } are c-sequences in E and «, 5 > 0 then {au,+5v,}
is a c-sequence. Note that in the case that the cone P is normal, a
sequence in F is a c-sequence if and only if it is a #-sequence. However,
when the cone is not normal, a c-sequence need not be a #-sequence.

Lemma 2.9. Let (X,d) be a tvs-cone b-metric space and q be a gen-
eralized c-distance on X. Also, let {x,} and {yn} be sequences in X
and x,y,z € X, and {u,} and {v,} be two c-sequences in P. Then the
following hold:
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(gp1) If q(xn,y) = up and q(xp,z) 2 v, forn € N, then y = z. In
particular, if ¢(z,y) =0 and q(x,z) =0, then y = z.

(qu) IfQ(mna yn) = up and Q(xna 2:) = vy forn €N, then {yn} converges
to z.

(gp3) If q(xn,xm) = up for m > n > ng (for some ng € N), then {x,}
is a Cauchy sequence in X.

(qpa) If q(y,xn) = uy for n € N, then {x,} is a Cauchy sequence in X.

Proof. Since the proof is easy and similar as in the case of c-distance
in tvs-cone metric spaces in [8], we omit it. [

3. Fixed Point Results

Our first result in this section is the following fixed point theorem of
Hardy-Rogers type under generalized c-distance in a tvs-cone b-metric
space without normality condition on the cone.

Theorem 3.1. Let (X,d) be a complete tvs-cone b-metric space with
coefficient s > 1 and let q be a generalized c-distance on X . Suppose that
a continuous self-map f : X — X satisfies the following two conditions:

q(fz, fy) = arq(z,y) + azq(x, fr) + asq(y, fy) + aaq(z, fy) + asq(y, fr),
(1)

q(fy, fz) 2 a1q(y, x) + azq(fz, x) + asq(fy,y) + auq(fy, =) + asq(f(cv,)y)
2

for all x,y € X, where o; fori=1,2,--- .5 are nonnegative constants
such that

s(aq + a3 + 204) + ag + (s> + s)as < 1.

Then f has a fived point in X. If fv =wv, then q(v,v) = 0.

Proof. For arbitrary zp € X, consider the sequence {z,} with z, =
f"xo, n € N. If x,, = x,,41 for some n, then z,, is a fixed point of f and
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the proof is finished. Suppose further that z,, # x,4+1 for n € Ng. Set
x =2, and y = x,—1 in (1). Then we have

q(Tns1,2n) = ¢(fTn, frn-1) (3)
= a1q(Tp, Tn-1) + @2q(Tn, [2n) + azq(Tn-1, fTn-1)
+ auq(vn, frn_1) + asq(zn_1, fzn)
= a1q(Tn, Tp—1) + a2q(Tn, Tn+1) + azq(Tn-1,25)
+ 044(](@%7 Tp) + a5q(Tn—1, Tny1)
= a1q(Tn, Tn-1) + (02 + say + sas5)q(Tp, Tpit)

+ (a3 + s05)q(Tn—1, Tn) + sQ4q(Tnt1, Tp).
Similarly, set © = x,, and y = x,,—1 in (2). Then we have
q(Tn, Tpi1) 2 01q(Tn-1,2n) + (a2 + sas + sa5)q(Tny1, o) (4)
+ (a3 + sa5)q(Tn, Tn-1) + sQuq(Tn, Tnt1).
Adding up (3) and (4), we obtain

Q(xn+1; xn) + Q(xna xn+1> = (CV1 + asz + 8045)[(](337“ xn—l) + Q(xn—lv xn)}
+ (a2 + 2504 + 505)[q(Tny1, Tn) + q(Tn, Trng1)].

Let u, = q(xn41,Tn) + q(Tn, Tny1). We get that

Up = (a1 + ag + sas)up—1 + (a2 + 2say + sas)uy,

a1 + as + sas
1 — (a2 + 2say + sas)
since s(a1+ag+2a4)+as+(s2+s)as < 1 and e.g., s(a; +az)+s2as > 0.
By repeating the procedure, we get u, = h"™ug for all n € N. Hence,

1
ie. Uy X hu,_1 forallmn e Nwith 0 < h = -,
S

q(Tn, Tpy1) X up 2 A"[q(21, 20) + q(w0, 21)]. (5)

Let m > n. It follows from (5) and 0 < sh < 1 that
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Q<xn7 J/‘m) = S[Q(xm -Tn—l—l) + q(xTH—h IL‘m)]

= SQ(xna xn—l—l) + S[SQ(l'n_H, xn+2) + Q($n+27 xm)]

= SQ(xna xn—l—l) + 82(](51?”_1_1, xn—l—?) +F Sm_nQ(xm—ly xm)]
< (sh™ + s?h" T s g2, x0) + g0, 1))
sh™

<
~—1-—sh

[q(z1, 70) + q(w0, 71)].

Using Lemma 2.9. (¢p3), {zn} is a Cauchy sequence in X. Since X is
complete, there exists a point z € X such that x,, — z as n — oo. By
applying continuity of f and since the limit of a sequence is unique, we
get fz = z. Moreover, let fv = v for v € X. Then (1) implies that

q(v,v) = q(fv, fv)
= a1q(v,v) + a2q(v, fv) + azq(v, fv) + asq(v, fv) + asq(v, fv)
5
= q(v,v).
i=1

5
Since > a; < s(aq + ag + 2a4) + ag + (s* + s)as < 1, we get that
i=1
q(v,v) = 0 by (ps). This completes the proof. O

Corollary 3.2. Let (X,d) be a complete tvs-cone b-metric space, q be a
generalized c-distance on X and f : X — X be a continuous mapping.
Suppose that there exist o, 3,7 > 0 with s(a + 283) + (52 + s)y < 1 such
that

q(fz, fy) 2 aq(z,y) + Bq(x, fy) +vq(y, fz),
q(fy, fr) 2 aq(y, =) + Ba(fy,z) + va(fz,y)

for all z,y € X. Then f has a fized point in X. Moreover, if fu = v,
then q(v,v) = 6.
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Proof. We obtain this result by applying Theorem 3.1 with a; = «,
ag=a3=0,ag=0Fand a5 =~. O

Remark 3.3. For Banach-type fized point theorem, we meed only one
condition as follows:

o(fz, fy) < Ma(e,y),  Ae [0, 1) |

S

In the process of proving Theorem 3.1, consider x = x,_1 (instead of
xr =xy) and y = x, (instead of y = xn—1). Then, for Kannan-type and
Cho-type [4] fized point results, we need only one condition:

oo, ) < Moo fo) +alu, fy)), A€ [07 il) ,

and

q(fz, fy) 2 aq(z,y)+6q(x, fr)+vq(y, fy), o B,7 >0 with s(a+8)+y <1,

respectively.

Question 1. Can the continuity condition for mapping f be replaced
by another condition in mentioned fixed point results?

Remark 3.4. In Theorem 3.1, set s = 1. Then we obtain Theorem 2
of [8].

Our second result in this section is a theorem including two mappings
and the existence of their common fixed point.

Theorem 3.5. Let (X,d) be a complete tvs-cone b-metric space with
coefficient s > 1 and let q be a generalized c-distance on X . Suppose that
continuous self-maps f,qg: X — X satisfy the following two conditions:

q(fz,gy) = aq(z,y) + Bla(z, fx) + q(y, gy)] + vla(z, gy) + q(y, f:v)](, |
6
q(gy, fr) 2 aq(y,z) + Bla(fz,x) + q(gy, y)] + a9y, z) + q(fx, y)](, |
7
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for all x,y € X, where «, 3,7 are nonnegative constants such that
sa+4 (s +1)B4 (s +3s)y < 1.

Then f and g have a common fized point in X. If fv = gv = v, then
q(v,v) = 0.

Proof. Suppose that zq is an arbitrary point in X, and define a sequence
{xn} by
r1 = fxo, 23 =gx1, *+, Topt1 = fTan, Tony2 = gTonyr for n=0,1,2,---.

Set = x9,42 and y = x9,41 in (6). Then we have

q(z2n+3; Tant2) = q(fTon+2, 9Tan+1) (8)
= aq(Tan+2, Tan+1) + Bla(Tan+2, [Tan+2) + @(T2n+1, 9T2n41)]
+7[q(22n12, gTont1) + @(T2n11, frony2)]
= aq(zany2, Tont1) + Bla(T2n12, T2n13) + ¢(T2n11, T2n12)]
+7(g(T2n+2, T2nt2) + @(T2041, T2nt3)]
= aq(r2nt2, Tant1) + (B + 57)q(Tan+1, T2nt2)

+ (B + 257)q(22n+2, T2nt3) + 579(T2n+3, T2n+2)-

Similarly, putting the same values for x,y in (7), we get

q(Tan+2, Tonts) = aq(xant1, Tant2) + (B + $7)q(T2n+2, Tan+1) 9)
+ (B + 257)q(Tan+3, Tant2) + 57¢(T2n42, T2n43)-

Adding up (8) and (9), we obtain

q(Ton+3, Ton+2) + q(Tont2, Tonts) = (a4 B+ s7)[q(22n12, Tont1) + ¢(T2n11, T2nt2)
+ (B + 357)q(x2n 12, Tont3) + q(T2043, Tont2)-

Let u, = q(zan, Ton+1) + ¢(Tan+1,T2n) and v, = ¢(T2nt1, Tant2) +
q(Tan42, Tont1). We get that

Unt1 = (a4 B+ s7)vp + (B + 357)up1,
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atBtsy 1o
1—(B+3sy) s’
sa+(s+1)3+ (s> +3s)y <1and e.g. s(a+f3)+s?y > 0. By a similar
procedure, set © = z9, and y = 2,41 in (6) and (7), one can obtain
v, = hu, for all n € N.

ie., Upt1 = hv, for allm € N with 0 < h =

Now, it follows from u,11 = hv, and v, =< hu, that
2 2
Upy1 S h*u,  and vy, 2 h*v,_1.
Thus, {u,} and {v,} are c-sequences. Moreover, we obtain

q(zon, Tont1) 2u,  and  ¢(xopt1, Tant2) =X vp

and hence, q¢(xn,xnt1) = s(u, + vp), where u, + v, is a c-sequence.
Lemma 2.9. (gps3) implies that {x,} is a Cauchy sequence in X. Since X
is complete, there exists a point z € X such that x,, — z as n — co. By
applying continuity of f and g, and since the limit of a sequence is
unique, we get fz = z = gz. Thus, z is a common fixed point of f and
g. Moreover, let fv = gv = v for v € X. Then (6) implies that

q(v,v) = q(fv, gv)
= aq(v,v) + Blg(v, fv) + q(v, gv)] + v(q(v, gv) + q(v, fv)]
= (a+ 208+ 2v)q(v,v).

Since a+23+27y < sa+(s+1)3+(s2+3s)y < 1, we get that q(v,v) = 0
by (ps). This completes the proof. [

Remark 3.6. As corollaries, for example, we can obtain the common
fized point result for self-maps f and g satisfying

1
a(fz,gy) 2 aqlz,y),  algy, f2) 2 aqy,z), O<a<—,  (10)
or for a self-map f satisfying

q(f "z, f™y) 2 aq(z,y) + Bla(z, f'x) + q(y, f™y)] +la(z, fMy) + q(y, o)),
q(f™y, ["x) 2 aq(y, @) + Blg(f"x, ) + q(f"y, )] +ylg(f "y, @) + q(f 2, y)],

where m,n € N and sa+ (s + 1) + (s* + 3s)y < 1.
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Example 3.7. Let E =R, P = [0,+00), X = [0,400). Also, consider
the cone b-metric d(z,y) = (z — y)? on X with s = 2. Take mappings

f,9: X — X defined by fz = 5 and gz = 7. Ifx:%andy:&then

15 5 15 5\% 25
(fxgy)—d<4 4> <4—4> =1

d(z, )_d<15 5>:<125—5>2:i5.

Thus, there is no a € (0, 1) such that d(fz, gy) < ad(z,y) for each z,y €
[0, 4+00), i.e., the existence of a common fixed point of f and g cannot
be deduced from the well-known cone b-metric version of Theorem 3.5.

and

Now, consider the complete tvs-cone b-metric d on X, defined as d(z, y)(t)

= (x — y)?p(t) with fixed ¢ € P = {f € C[0,1] : f(t) >0 for t € [0,1]}

and take the generalized c—distance q(z,y)(t) = y?p(t) (see Example
3.8). Also, select 1 Sa<s L and =~ = 0. Then we have

2
(t) < ay®o(t)

q(fz,gy)(t) = (gy)*e(t) = Eso
= aq(z,y)(t) + Bla(z, fx)(t) + q(y 9y)(t)]
+lg(z, gy) () + q(y, fx)(t)], te][0,1],

ie., q(fr,gy) = aq(z,y) + Bla(z, fz) + q(y, 9v)] + va(z, gy) + q(y, fz)]
for all x,y € [0,00). Similarly, we have

2

a(gy. f2)(t) = (fo)2e(t) = o(t) < aze(t)

4
= aq(y,z)(t) + Bla(fz,z)(t) + Q(an y)(1)]
+lg(gy, ©)(t) + q(fz,y)(t)], te][0,1],

ie., q(gy, fr) 2 aq(y, =) + Bla(fr,x) + q(9y,v)] + vla(gy, ) + q¢(fz,v)]
for all z,y € [0, 00).

Thus, all conditions of Theorem 3.5 are satisfied. Note that f and g have
a (trivial) common fixed point v = 0 and that ¢(v,v) = 0.
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Question 2. Can the continuity condition for mappings f and g be
replaced by another condition in mentioned fixed point results?

Remark 3.8. In Theorem 3.5, set s = 1. Then we obtain Theorem 3
of [8].

4. Periodic Point Results

Obviously, if f is a map which has a fixed point z, then z is also a fixed
point of f™ for each n € N. However the converse need not be true. If
amap f: X — X satisfies Fiz(f) = Fiz(f") for each n € N, where
Fix(f) stands for the set of fixed points of f [14], then f is said to have
property (P). Recall also that two mappings f,¢g : X — X are said
to have property (Q) if Fiz(f)( Fiz(g) = Fiz(f™)( Fiz(¢g") for each
n € N.

Theorem 4.1. Let (X, d) be a tvs-cone b-metric space and q : X x X —
FE be a generalized c-distance on X. Suppose that a continuous self-map
f: X — X satisfies

q(fx, f2) + q(f*z, fx) < Ng(z, fr) + q(fo,z)] (11)
for x € X, where X € (0, %) Then f has property (P).

Proof. Since the proof is easy and similar as in the case of c-distance
in tvs-cone b-metric spaces in [8], we leave it to the reader. [

Theorem 4.2. Let q be a generalized c-distance on a tvs-cone b-metric
space (X, d) and let f: X — X be continuous. Suppose that inequalities
(1) and (2) hold for all z,y € X, where o; are nonnegative constants
such that s(aq + az + 2ay4) + oo + (52 4+ s)as < 1. Then f has property
(P).

Proof. Putting x = fx and y = z in condition (1), we have
a(f*z, fz) = q(f fx, fz) (12)
= alQ(fxv :B) + 042(](]01', ffx) + OégQ(ZL', fIE)
+ asq(fz, fz) + asq(z, f fz)
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= o1q(fz,x) + azq(fz, f*2) + asq(z, fz)
+'a4Q(f$af3ﬂ +‘@5Q($,f2$)
<oq(fz,x) + asq(fz, fo) + asq(z, fx)

15

+ saulg(fz, f2z) + q(f*x, f2)] + sasla(e, f2) + o(fz, f22)).

Similarly, set z = fz and y = x in (2) and we have

q(fz, fPx) < arq(w, fo) + a2q(f?x, fo) + asq(fz,z) (13)

+ saulq(f, f2x) + q(f*x, f2)] + sas[q(fx, fx) + q(fz, )]

Adding up (12) and (13) we get
(2, fx) + q(fx, f2x) < (a1 + a3 + sas)[q(@, fr) + q(fz, 7))
+ (a2 + 2504 + s05)[g(f*2, fo) + q(fz, f2)],

a1 + as + sas < 1 . (a1 + +
—, since s(aq + «
1 — (a2 + 2say + sas) s ! 3
204) +ag + (2 + s)as < 1. O

ie. (11) with 0 < X\ =

Remark 4.3. In Theorem 3.5, set s = 1. Then we obtain Corollary 3
of [8].

Now, one can obtain similar results concerning property (@) of two self-
mappings f and g.

5. An Application

We are going to apply our results to obtain sufficient conditions for
existence of solution for a system of Fredholm integral equations.
Theorem 5.1. Let F,G : [0,1> x R — R be two continuous func-
tions and suppose that the following conditions are satisfied for all pairs

(z,y) € (Cr(D))?, T = [0,1]:

tel tel

max ( /0 1 G(t,u,y(u)) du>2 < amax(y(t)” (14)

+3 [max (/01 F(t,u,z(u)) du>2 + max< | Gltuy(w) duﬂ ,

tel tel
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1 2
max</0 F(t,u,z(u)) du> < ozmax(:z:(t))2 + ﬁ[max(:r(t))2 + max(y(t))g],

tel tel tel tel
(15)

where o, 0 = 0 and 2a+ 38 < 1. Then the system of integral equations

{ fo (t,u,z(u)) du

fO (t,u, x(u)) du (16)

has a solution in Cgr(I).

Proof. Let, as in Example 2.7, P = {zx € E : z(t) > O for all t € I}
be a (nonnormal) cone in the Banach space E = C%(I) with the norm
llz]| = |z|loc +||2||co- Further, consider the set X = C(I) equipped with
the tvs-cone b-metric d : X x X — P, given by

d(z,y)(v) =€ r?éalx(ac(t) — y(t))2, vel
(with s = 2). Also, define a generalized c-distance ¢ : X x X — P by
q(z,y)(v) =" I?glx(y(t))z, vel.
Further, let f,g: X — X be defined by

1
fx(t):/o F(t,u,z(u)) du,

1
= / G(t,u,z(u))du
0

We have to check that the mappings f, g satisfy conditions (6) and (7)
of Theorem 3.5.

For every z,y € X and v € I, using (14) and (15), we obtain

o(f, gy) (v —emax</Gtuy du)

<
a- er?ealx ())

L@ {T§X</Ol F(t,u,:z:(U))dU>2 +r%x< . G(t,u,y(u))du>2}

= aq(z,y)(v) + Blq(z, fz)(v) + q(y, gy)(v)],
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ie., q(fr,gy) 2 aq(z,y) + Ble(z, fx) + q(y, gy)], and

algy, fr)(v) = & max( / Rt () du>2

tel

<a-e’ r?éalx(:c(t))Q +5-e" [nglealx(gu(t))2 + Htléalx(y(t))Q]

= aq(y,z)(v) + Bla(fr,z)(v) + q(gy, y)(v)],

ie., q(gy, fr) < aq(y,z) + Blg(fz, ) + q(gy,y)]. Thus, the inequalities
(6) and (7) are fulfilled with v = 0 since 2a+ 303 = sa+ (s + 1) < 1.

Applying Theorem 3.5 we conclude that the mappings f and g have a
fixed point x* € X. It is clear that z* is a solution of the system (16). O
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