Module Amenability and Tensor Product of Semigroup Algebras

A. Bodaghi
Islamic Azad University-Garmsar Branch

Abstract. Let S be an inverse semigroup with an upward directed set of idempotents E. In this paper we prove that if S is amenable, then $\ell^1(S) \hat{\otimes} \ell^1(S)$ is module amenable as an $\ell^1(E)$-module. Also we show that $\ell^1(S) \hat{\otimes} \ell^1(S)$ is module super-amenable if an appropriate group homomorphic image of S is finite.

AMS Subject Classification: 46H25.
Keywords and Phrases: Banach modules, module derivation, module amenability, inverse semigroup.

1. Introduction

The notion of amenability of Banach algebras was introduced by Barry Johnson in [9]. A Banach algebra A is amenable if every bounded derivation from A into any dual Banach A-module is inner, equivalently if $H^1(A, X^*) = \{0\}$ for every Banach A-module X, where $H^1(A, X^*)$ is the first Hochschild cohomology group of A with coefficients in X^*. He proved in [9, Proposition 5.4] that if A and B are amenable Banach algebra, then so is $A \hat{\otimes} B$ (see also [6, Corollary 2.9.62]). Also A is called super-amenable (contractible) if $H^1(A, X) = \{0\}$ for every Banach A-bimodule X (see [6,12]). It is known $A \hat{\otimes} B$ is super-amenable if A and B are super-amenable [12, Exercise 4.1.4].

For a discrete semigroup S, $\ell^\infty(S)$ is the Banach algebra of bounded complex-valued functions on S with the supremum norm and pointwise
A. BODAGHI

multiplication. For each \(t \in S \) and \(f \in \ell^\infty(S) \), let \(L_t f \) and \(R_t f \) denote the left and the right translations of \(f \) by \(t \), that is \(\langle L_t f, s \rangle = \langle f, ts \rangle \) and \(\langle R_t f, s \rangle = \langle f, st \rangle \), for each \(s \in S \). Then a linear functional \(m \in (\ell^\infty(S))^* \) is called a mean if \(\|m\| = \langle m, 1 \rangle = 1 \); \(m \) is called a left (right) invariant mean if \(\langle m, L_t f \rangle = \langle m, f \rangle \) (\(\langle m, R_t f \rangle = \langle m, f \rangle \), respectively) for all \(s \in S \) and \(f \in \ell^\infty(S) \). A discrete semigroup \(S \) is called amenable if there exists a mean \(m \) on \(\ell^\infty(S) \) which is both left and right invariant (see [7]). An inverse semigroup is a discrete semigroup \(S \) such that for each \(s \in S \), there is a unique element \(s^* \in S \) with \(ss^* s = s \) and \(s^* ss^* = s^* \). Elements of the form \(ss^* \) are called idempotents of \(S \). For an inverse semigroup \(S \), a left invariant mean on \(\ell^\infty(S) \) is right invariant and vise versa.

M. Amini in [1] introduced the concept of module amenability for a Banach algebra. He showed that for an inverse semigroup \(S \) with set of idempotents \(E \), the semigroup algebra \(\ell^1(S) \) is \(\ell^1(E) \)-module amenable if and only if \(S \) is amenable.

This extends the Johnson’s theorem [9, Theorem 2.5] in the discrete case) which asserts that for a discrete group \(G \), \(\ell^1(G) \) is amenable if and only if \(G \) is amenable. The author and Amini in [4] introduced the concept of module super-amenability and showed that for an inverse semigroup \(S \), the semigroup algebra \(\ell^1(S) \) is module super-amenable if and only if the group homomorphic image \(S/\approx \) of \(S \) is finite, where \(\approx \) is an equivalence relation on \(S \).

In part two of this paper, we show that when \(\mathfrak{A} \) acts trivially on \(\mathcal{A} \) from left then under some mild conditions, module amenability of \(\mathcal{A} \otimes \mathcal{A} \) implies amenability of \(\mathcal{A}/J \otimes \mathcal{A}/J \) and vise versa, where \(J \) is the closed ideal of \(\mathcal{A} \) generated by \(\alpha \cdot (ab) - (ab) \cdot \alpha \) for all \(a \in \mathcal{A} \) and \(\alpha \in \mathfrak{A} \). There is a similar result for super amenability.

Finally, we prove that if \(S \) is an amenable inverse semigroup with an upward directed set of idempotents \(E \), then \(\ell^1(S) \otimes \ell^1(S) \) is module amenable as an \(\ell^1(E) \)-module. Also we show that \(\ell^1(S) \otimes \ell^1(S) \) is module super-amenable when the appropriate group homomorphic image \(S/\approx \) is finite.
2. Module Amenability of the Tensor Product of Banach Algebras

Let \(\mathcal{A} \) and \(\mathfrak{A} \) be Banach algebras such that \(\mathcal{A} \) is a Banach \(\mathfrak{A} \)-bimodule with compatible actions, as follows

\[
\alpha \cdot (ab) = (\alpha \cdot a)b, \quad (ab) \cdot \alpha = a(b \cdot \alpha) \quad (a, b \in \mathcal{A}, \alpha \in \mathfrak{A}).
\]

Let \(X \) be a Banach \(\mathcal{A} \)-bimodule and a Banach \(\mathfrak{A} \)-bimodule with compatible actions, that is

\[
\alpha \cdot (a \cdot x) = (\alpha \cdot a) \cdot x, \quad (a \cdot x) \cdot \alpha = \alpha \cdot (x \cdot a) \quad (a \in \mathcal{A}, \alpha \in \mathfrak{A}, x \in X)
\]

and the same for the right or two-sided actions. Then we say that \(X \) is a Banach \(\mathcal{A} \)-\(\mathfrak{A} \)-module. If moreover \(\alpha \cdot x = x \cdot \alpha \) for all \(\alpha \in \mathfrak{A}, x \in X \), then \(X \) is called a commutative \(\mathcal{A} \)-\(\mathfrak{A} \)-module. If \(X \) is a commutative Banach \(\mathcal{A} \)-\(\mathfrak{A} \)-module, then so is \(X^* \), the first dual space of \(X \), where the actions of \(\mathcal{A} \) and \(\mathfrak{A} \) on \(X^* \) are defined as follows

\[
\langle \alpha \cdot f, x \rangle = \langle f, x \cdot \alpha \rangle, \quad \langle a \cdot f, x \rangle = \langle f, x \cdot a \rangle \quad (a \in \mathcal{A}, \alpha \in \mathfrak{A}, x \in X, f \in X^*)
\]

and the same for the right actions.

Note that, in general, \(\mathcal{A} \) is not an \(\mathcal{A} \)-\(\mathfrak{A} \)-module because \(\mathcal{A} \) does not satisfy in the compatibility condition \(a \cdot (\alpha \cdot b) = (a \cdot \alpha) \cdot b \) for all \(\alpha \in \mathfrak{A}, a, b \in \mathcal{A} \) [2]. But when \(\mathcal{A} \) is a commutative \(\mathfrak{A} \)-module and acts on itself by multiplication from both sides, then it is also a Banach \(\mathcal{A} \)-\(\mathfrak{A} \)-module.

It is well known that \(\mathcal{A} \# \mathcal{A} \), the projective tensor product of \(\mathcal{A} \) and \(\mathcal{A} \) is a Banach algebra with respect to the canonical multiplication defined by \((a \otimes b)(c \otimes d) = (ac \otimes bd) \). Also it is a Banach \(\mathcal{A} \)-\(\mathfrak{A} \)-bimodule and a Banach \(\mathfrak{A} \)-bimodule by the following usual actions:

\[
\alpha \cdot (a \otimes b) = (\alpha \cdot a) \otimes b, \quad c \cdot (a \otimes b) = (ca) \otimes b \quad (\alpha \in \mathfrak{A}, a, b, c \in \mathcal{A}),
\]

Similarly, for the right actions consider the module projective tensor product \(\mathcal{A} \#_{\mathfrak{A}} \mathcal{A} \) which is isomorphic to the quotient space \((\mathcal{A} \# \mathcal{A})/I \), where \(I \) is the closed ideal of the projective tensor product \(\mathcal{A} \# \mathcal{A} \) generated by elements of the form \(\alpha \cdot a \otimes b - a \otimes b \cdot \alpha \) for \(\alpha \in \mathfrak{A}, a, b \in \mathcal{A} \) [11]. Also we consider \(J \), the closed ideal of \(\mathcal{A} \) generated by elements
of the form \((\alpha \cdot a)b - a(b \cdot \alpha)\) for \(\alpha \in \mathfrak{A}, a, b \in \mathcal{A}\). Then \(\mathcal{A}/J\) is Banach \(\mathcal{A}\)-\(\mathfrak{A}\)-module when \(\mathcal{A}\) acts on \(\mathcal{A}/J\) canonically.

Let \(\mathcal{A}\) and \(\mathfrak{A}\) be as in the above and \(X\) be a Banach \(\mathcal{A}\)-\(\mathfrak{A}\)-module. A bounded map \(D : \mathcal{A} \rightarrow X\) is called a module derivation if

\[
D(a \pm b) = D(a) \pm D(b), \quad D(ab) = D(a) \cdot b + a \cdot D(b) \quad (a, b \in \mathcal{A}),
\]

and

\[
D(\alpha \cdot a) = \alpha \cdot D(a), \quad D(a \cdot \alpha) = D(a) \cdot \alpha \quad (a \in \mathcal{A}, \alpha \in \mathfrak{A}).
\]

Although \(D\) is not necessary linear, but still its boundedness implies its norm continuity (since it preserves subtraction). When \(X\) is commutative \(\mathcal{A}\)-\(\mathfrak{A}\)-module, each \(x \in X\) defines a module derivation

\[
D_x(a) = a \cdot x - x \cdot a \quad (a \in \mathcal{A}).
\]

These are called inner module derivations. The Banach algebra \(\mathcal{A}\) is called module amenable (as an \(\mathfrak{A}\)-module) if for any commutative Banach \(\mathcal{A}\)-\(\mathfrak{A}\)-module \(X\), each module derivation \(D : \mathcal{A} \rightarrow X^*\) is inner [1]. Similarly, \(\mathcal{A}\) is called module super-amenable if each module derivation \(D : \mathcal{A} \rightarrow X\) is inner [4].

We say the Banach algebra \(\mathfrak{A}\) acts trivially on \(\mathcal{A}\) from left (right) if for each \(\alpha \in \mathfrak{A}\) and \(a \in \mathcal{A}\), \(\alpha \cdot a = f(\alpha)a \ (a \cdot \alpha = f(\alpha)a)\), where \(f\) is a continuous linear functional on \(\mathfrak{A}\). The following lemma is proved in [3].

Lemma 2.1. Let \(\mathcal{A}\) be a Banach algebra and Banach \(\mathfrak{A}\)-module with compatible actions, and \(J_0\) be a closed ideal of \(\mathcal{A}\) such that \(J \subseteq J_0\). If \(\mathcal{A}/J_0\) has a left or right identity \(e + J_0\), then for each \(\alpha \in \mathfrak{A}\) and \(a \in \mathcal{A}\) we have \(a \cdot \alpha - \alpha \cdot a \in J_0\), i.e., \(\mathcal{A}/J_0\) is commutative Banach \(\mathfrak{A}\)-module.

Recall that \(\mathfrak{A}\) has a bounded approximate identity for \(\mathcal{A}\) if there is a bounded net \(\{\gamma_i\}\) in \(\mathfrak{A}\) such that for each \(a \in \mathcal{A}\), \(\|\gamma_i \cdot a - a\| \rightarrow 0\) and \(\|a \cdot \gamma_i - a\| \rightarrow 0\), as \(i \rightarrow \infty\).

Theorem 2.2. Let \(\mathcal{A}\) be a Banach \(\mathfrak{A}\)-module with trivial left action and \(\mathcal{A}/J\) has an identity. If \(\mathcal{A} \otimes \mathfrak{A}\) is module amenable (module super-amenable), then \(\mathcal{A}/J \otimes \mathcal{A}/J\) is amenable (module super-amenable). The converse is true if \(\mathfrak{A}\) has a bounded approximate identity for \(\mathcal{A}\).
Proof. We prove the result for the module amenability. Let X be a unital $A/J \hat{\otimes} A/J$-bimodule and $D : A/J \hat{\otimes} A/J \to X^*$ be a bounded derivation (see [5, Lemma 43.6]). Then X is an $A \hat{\otimes} A$-bimodule with module actions given by

$$(a \otimes b) \cdot x := ((a + J) \otimes (b + J)) \cdot x, \quad x \cdot (a \otimes b) := x \cdot ((a + J) \otimes (b + J)) \quad (x \in X, a \in A),$$

and X is \mathcal{A}-bimodule with trivial actions, that is $\alpha \cdot x = x \cdot \alpha = f(\alpha)x$, for each $x \in X$ and $\alpha \in \mathcal{A}$ which f is a continuous linear functional on \mathcal{A}. Since $f(\alpha)a - a \cdot \alpha \in J$ (see Lemma 2.1.), we have $f(\alpha)a + J = a \cdot \alpha + J$, for each $\alpha \in \mathcal{A}$, and the actions of \mathcal{A} and $A \hat{\otimes} A$ on X are compatible. Therefore X is commutative Banach $A \hat{\otimes} A$-module. Consider $\Phi : (A \hat{\otimes} A)/I \to A/J \hat{\otimes} A/J$ defined by

$$\Phi((a \otimes b) + I) = (a + J) \otimes (b + J).$$

For each $a, b \in A$ and $\alpha \in \mathcal{A}$ we have

$$(\alpha \cdot a + J) \otimes (b + J) - (a + J) \otimes (b \cdot \alpha + J) = (f(\alpha)a + J) \otimes (b + J) \quad - (a + J) \otimes (f(\alpha)b + J) = f(\alpha)(a + J) \otimes (b + J) \quad - f(\alpha)(a + J) \otimes (b + J) = 0.$$

We have used Lemma 2.1., in the first equality, hence Φ is well defined. Obviously Φ is \mathcal{A}-bimodule morphism. We show that the map $\overline{D} = D \circ \Phi \circ \pi : A \hat{\otimes} A \to X^*$ is module derivation where $\pi : A \hat{\otimes} A \to (A \hat{\otimes} A)/I$ is the projection map. For each $a, b, c, d \in A$ and $\alpha \in \mathcal{A}$, we have

$$\overline{D}((a \otimes b)(c \otimes d)) = D(((a + J) \otimes (b + J))((c + J) \otimes (d + J))) \quad = D((a + J) \otimes (b + J)) \cdot ((c + J) \otimes (d + J)) \quad + ((a + J) \otimes (b + J)) \cdot D((c + J) \otimes (d + J)) \quad = \overline{D}(a \otimes b) \cdot (c \otimes d) + (a \otimes b) \cdot \overline{D}(c \otimes d).$$

For each $a, b \in A$ we have $\overline{D}((a \otimes b) \pm (c \otimes d)) = \overline{D}(a \otimes b) \pm \overline{D}(c \otimes d)$.

Also $A/J \hat{\otimes} A/J$ is an \mathfrak{A}-bimodule, hence for $\alpha \in \mathfrak{A}$, we have
\[
\overline{D}((a \otimes b) \cdot \alpha) = D((a + J) \otimes (b \cdot \alpha + J)) \\
= D((a + J) \otimes (f(\alpha)b + J)) \\
= f(\alpha)D((a + J) \otimes (b + J)) \\
= \overline{D}(a \otimes b) \cdot \alpha.
\]
On the other hand, since the left \mathfrak{A}-module actions on A and X are trivial, $\overline{D}(\alpha \cdot (a \otimes b)) = \overline{D}(f(\alpha)(a \otimes b)) = \alpha \cdot \overline{D}(a \otimes b)$. Therefore there exists $x^* \in X^*$ such that $\overline{D}(a \otimes b) = (a \otimes b) \cdot x^* - x^* \cdot (a \otimes b)$, hence $D((a + J) \otimes (b + J)) = ((a + J) \otimes (b + J)) \cdot x^* - x^* \cdot ((a + J) \otimes (b + J))$, and so D is inner.

For the converse, we note that for every derivation $D : A \rightarrow X$ on unital Banach algebra A with identity e, we have $D(e) = 0$ and without loss of generality we can assume that $e \cdot D(a) = D(a) \cdot e = D(a)$ for all $a \in A$. We use this fact in the rest of the proof. Now, suppose that X is a commutative Banach $A \hat{\otimes} A$-\mathfrak{A}-module. We consider the following module actions $A/J \hat{\otimes} A/J$ on X,
\[
((a + J) \otimes (b + J)) \cdot x := (a \otimes b) \cdot x, \quad x \cdot ((a + J) \otimes (b + J)) := x \cdot (a \otimes b) \quad (x \in X, a \in A).
\]
For each $a, b, c, d \in A$, $x \in X$, and $\alpha, \beta \in \mathfrak{A}$, we have
\[
((\alpha \cdot ab - ab \cdot \alpha) \otimes (\beta \cdot cd - cd \cdot \beta)) \cdot x = (\alpha \cdot ab \otimes \beta \cdot cd - \alpha \cdot ab \otimes cd \cdot \beta \\
- \alpha \cdot ab \otimes \beta \cdot cd \\
+ ab \cdot \alpha \otimes cd \cdot \beta) \cdot x \\
= \beta \cdot ((f(\alpha)ab \otimes cd) \cdot x) \\
- ((f(\alpha)ab \otimes cd) \cdot x) \cdot \beta \\
- \beta \cdot ((ab \cdot \alpha \otimes cd) \cdot x) \\
+ ((ab \cdot \alpha \otimes cd) \cdot x) \cdot \beta = 0.
\]
Similarly if $a \in J$ or $b \in J$, we can show that $(a \otimes b) \cdot x = 0$ and $x \cdot (a \otimes b) = 0$. Therefore X is a Banach $A/J \hat{\otimes} A/J$-bimodule. Suppose that $D : A \hat{\otimes} A \rightarrow X^*$ is a module derivation, and consider $\tilde{D} : A/J \hat{\otimes} A/J \rightarrow X^*$ defined by $\tilde{D}((a + J) \otimes (b + J)) := D(a \otimes b)$, for all $a, b \in A$. Suppose
that $e + J$ is identity for A/J, we have

$$D(a \otimes (a \cdot cd - cd \cdot e)) = \alpha \cdot D(a \otimes cd) - D(a \otimes cd) \cdot \alpha$$

$$= \alpha \cdot D(ae \otimes cd) - D(ae \otimes cd) \cdot \alpha$$

$$= \alpha \cdot D(ae \otimes c) \cdot (e \otimes d) + \alpha \cdot (a \otimes c) \cdot D(e \otimes d)$$

$$- D(a \otimes c) \cdot (e \otimes d) \cdot \alpha - (a \otimes c) \cdot D(e \otimes d) \cdot \alpha = 0.$$

Although ae is not equal with a, but we have

$$D(a \otimes cd) = \tilde{D}((a+J) \otimes (cd+J)) = \tilde{D}((ae+J) \otimes (cd+J)) = D(ae \otimes cd).$$

By the above observation, \tilde{D} is also well-defined. Suppose that A has a bounded approximate identity (γ_i) for A. Since f is bounded, \[\{ |f(\gamma_i)| \}\] is a bounded sequence in \mathbb{C}. Without loss of generality, we may assume that $f(\gamma_i) \to 1$, as $i \to \infty$. Then for each $\lambda \in \mathbb{C}$ we have

$$e \cdot (\lambda \gamma_i) - f(\gamma_i)e = (\lambda e) \cdot \gamma_i - f(\gamma_i)e \to \lambda e - e$$

in norm. Since J is a closed ideal of A, $\lambda e - e \in J$. Next, for each $\lambda \in \mathbb{C}$, and $a, b \in A$, we have

$$\tilde{D}((\lambda a + J) \otimes (b + J)) = \tilde{D}((a + J) \otimes (b + J))(e + J) \otimes (\lambda e + J)$$

$$= \tilde{D}((a + J) \otimes (b + J)) \cdot ((e + J) \otimes (\lambda e + J))$$

$$+ ((a + J) \otimes (b + J)) \cdot \tilde{D}((e + J) \otimes (\lambda e + J))$$

$$= \lambda \tilde{D}((a + J) \otimes (b + J)) \cdot ((e + J) \otimes (e + J))$$

$$+ ((a + J) \otimes (b + J)) \cdot \tilde{D}((e + J) \otimes (e + J))$$

$$= \lambda \tilde{D}((a + J) \otimes (b + J)).$$

Thus \tilde{D} is \mathbb{C}-linear, and so it is inner. Therefore D is an inner module derivation. □

In this part we find conditions on a (discrete) inverse semigroup S such that the tensor product $\ell^1(S) \hat{\otimes} \ell^1(S)$ is $\ell^1(E)$-module amenable and super-amenable, where E is the set of idempotents of S, acting on S trivially from left and by multiplication from right. Let S be an inverse semigroup with set idempotent E, where the order of E is defined by

$$e \preceq d \iff ed = e \quad (e, d \in E).$$
It is easy to show that E is a (commutative) subsemigroup of S [8, Theorem V.1.2]. In particular $\ell^1(E)$ could be regard as a subalgebra of $\ell^1(S)$, and thereby $\ell^1(S)$ is a Banach algebra and a Banach $\ell^1(E)$-module with compatible actions ([1]). Here we let $\ell^1(E)$ act on $\ell^1(S)$ by multiplication from right and trivially from left, that is

$$\delta_e \cdot \delta_s = \delta_s, \quad \delta_s \cdot \delta_e = \delta_{se} \cdot \delta_e \quad (s, e \in E).$$

In this case, the ideal J is the closed linear span of $\{\delta_{set} - \delta_{st} : s, t \in S, e \in E\}$. We consider an equivalence relation on S as follows

$$s \approx t \iff \delta_s - \delta_t \in J \quad (s, t \in S).$$

Recall that E is called upward directed if for every $e, f \in E$ there exists $g \in E$ such that $eg = e$ and $fg = f$. This is precisely the assertion that S satisfies the D_1 condition of Duncan and Namioka [7]. It is shown in [10, Theorem 3.2.], that if E is upward directed, then the quotient S/\approx is a discrete group. As in [10, Theorem 3.3], we may observe that $\ell^1(S)/J \cong \ell^1(S/\approx)$. With the above notations, $\ell^1(S)/J \cong \ell^1(S/\approx)$ is a commutative $\ell^1(E)$-bimodule with the following actions

$$\delta_e \cdot (\delta_s + J) = \delta_s + J, \quad (\delta_s + J) \cdot \delta_e = \delta_{se} + J \quad (s, e \in E).$$

Theorem 2.3. Let S be an inverse semigroup with an upward directed set of idempotents E and $\ell^1(S)$ be a Banach $\ell^1(E)$-module with trivial left action and canonical right action. Then the following statements hold:

(i) If S is amenable, then $\ell^1(S) \hat{\otimes} \ell^1(S)$ is module amenable.

(ii) If S/\approx is finite, then $\ell^1(S) \hat{\otimes} \ell^1(S)$ is module super-amenable.

Proof. (i) The semigroup algebra S is amenable if and only if $\ell^1(S)$ is module amenable [1, Theorem 3.1]. Thus $\ell^1(S/\approx)$ is unital amenable Banach algebra by [3, Proposition 3.2], and so the tensor product $\ell^1(S/\approx) \hat{\otimes} \ell^1(S/\approx)$ is amenable [6, Corollary 2.9.62]. Now the proof is completed by using Theorem 2.2.

(ii) Since S/\approx is a finite (discrete)group, $\ell^1(S)$ is module super-amenable as $\ell^1(E)$-module, hence $\ell^1(S/\approx)$ is super-amenable by [4,
Lemma 2.7. By [12, Exercise 4.1.4], $\ell^1(S/ \approx) \hat{\otimes} \ell^1(S/ \approx)$ is super-amenable. Now the result follows from Theorem 2.2 with $A = \ell^1(S)$ and $\mathfrak{A} = \ell^1(E)$. □

Example 2.4. (i) Let C be the bicyclic inverse semigroup generated by a and b, that is

$$C = \{a^mb^n : m, n \geq 0\}, \quad (a^mb^n)^* = a^nb^m.$$

The set of idempotents of C is $E_C = \{a^mb^n : n = 0, 1, \ldots\}$ which is totally ordered (and so is upward directed) with the following order

$$a^nb^n \preceq a^mb^m \iff m \preceq n.$$

It is shown in [3] that C/ \approx is isomorphic to the group of integers \mathbb{Z}, hence C is amenable. Therefore the tensor product $\ell^1(C) \hat{\otimes} \ell^1(C)$ is module amenable by Theorem 2.3.

(ii) Let (\mathbb{N}, \lor) be the commutative semigroup of positive integers with maximum operation $m \lor n = \max(m, n)$, then each element of \mathbb{N} is an idempotent, that is $E_{\mathbb{N}} = \mathbb{N}$. Hence \mathbb{N}/\approx is the trivial group with one element. Therefore by Theorem 2.2., the tensor product $\ell^1(\mathbb{N}) \hat{\otimes} \ell^1(\mathbb{N})$ is module super-amenable, as an $\ell^1(\mathbb{N})$-module.

Acknowledgements

The author would like to thank the referee for careful reading of the paper and giving some useful suggestions.

References

Abasalt Bodaghi

Department of Mathematics
Assistant Professor of Mathematics
Islamic Azad University, Garmsar-Branch
Garmsar, Iran.
E-mail: abasalt.bodaghi@gmail.com