Eigenfunctions of the
Weighted Composition Operators

H. Rezaei
Yasouj University

Abstract. In the present paper, we characterize the eigenfunctions of a weighted composition operator on space of holomorphic function on the unit disk.

AMS Subject Classification: 47B33; 47B38.
Keywords and Phrases: Denjoy-Wolff point, linear-fractional model theorem, weighted composition operator.

1. Introduction

A weighted composition operator $C_{\varphi,\psi}$ is an operator that maps $f \in H(U)$, the space of holomorphic functions on the unit disk U, into $C_{\varphi,\psi}(f)(z) = \varphi(z)f(\psi(z))$, where φ and ψ are analytic functions defined in U such that $\psi(U) \subseteq U$. When $\varphi \equiv 1$, we just have the composition operator C_{ψ} defined by $C_{\psi}(f) = f \circ \psi$.

The eigenfunctions of a composition operator on the classical Hardy space H^2, induced by a hyperbolic disk automorphism, are considered in [2, 4, 5] where it has been shown that many eigenfunctions of a composition operator can be found in the doubly cyclic subspace generated by special functions in H^2.

Studying the eigenfunctions of weighted composition operators entails a study of the iterate behavior of holomorphic self maps. The holomorphic self maps of U are divided into classes of elliptic and non-elliptic type. The elliptic type is an automorphism and has a fixed point in U. It is
well known that this map is conjugate to a rotation \(z \rightarrow \lambda z \) for some complex number \(\lambda \) with \(|\lambda| = 1 \). The iterate of a non-elliptic map can be characterized by the Denjoy-Wolff Iteration Theorem \([1, 6, 7]\). In the following notation " \(n \xrightarrow{k} \) " means uniformly converges on compact subsets of \(\mathbb{U} \) and \(\psi_n \) denotes the composition of \(\psi \) with itself \(n \)-times.

Denjoy-Wolff Iteration Theorem. Suppose \(\psi \) is a holomorphic self-map of \(\mathbb{U} \) that is not an elliptic automorphism. Then

(i) If \(\psi \) has a fixed point \(w \in \mathbb{U} \), then \(\psi_n \xrightarrow{k} w \) and \(|\psi'(w)| < 1 \).

(ii) If \(\psi \) has no fixed point in \(\mathbb{U} \), then there is a point \(w \in \partial \mathbb{U} \) such that \(\psi_n \xrightarrow{k} w \) and the angular derivative of \(\psi \) exists at \(w \), with \(0 < \psi'(w) \leq 1 \).

We call the unique attracting point \(w \), the Denjoy-Wolff point of \(\psi \). By the Denjoy-Wolff Iteration Theorem, a general classification of a non-elliptic holomorphic self maps of \(\mathbb{U} \) can be given: let \(w \) be the Denjoy-Wolff point of a holomorphic self-map of \(\mathbb{U} \). We say \(\psi \) is of dilation type if \(w \in \mathbb{U} \), of hyperbolic type if \(w \in \partial \mathbb{U} \) and \(\psi'(w) < 1 \), and of parabolic type if \(w \in \partial \mathbb{U} \) and \(\psi'(w) = 1 \).

In the present paper we characterize the eigenfunctions of a weighted composition operators on \(H(\mathbb{U}) \).

2. Main Result

From now on, we assume that \(w \) is the Denjoy-Wolff point of non-elliptic holomorphic self-map \(\psi \) and \(\varphi \) is a holomorphic function on \(\mathbb{U} \) which is continuous at \(w \) and \(\varphi(w) \neq 0 \).

We characterize the eigenfunctions of \(C_{\varphi, \psi} \) in \(H(\mathbb{U}) \). In fact, if the infinite product \(\prod_{n=0}^{\infty} \frac{1}{\varphi(w)} \varphi(\psi_n(z)) \) converges uniformly on compact subsets \(\mathbb{U} \) then, the function

\[
g(z) = \prod_{n=0}^{\infty} \frac{1}{\varphi(w)} \varphi(\psi_n(z))
\]

is holomorphic on \(\mathbb{U} \) and satisfies the equation \(\varphi \cdot g \circ \psi = \varphi(w)g \) and is indeed an eigenfunction of \(C_{\varphi, \psi} \). That all eigenfunctions of \(C_{\varphi, \psi} \) in
EIGENFUNCTIONS OF THE WEIGHTED...

$H(U)$, continuous at w, are obtained in this way is the content of the following theorem.

Proposition 2.1. Let $g \in H(U)$ be a non-zero eigenfunction of $C_{\varphi, \psi}$ which is continuous at w. Then either $g(w) = 0$ or the infinite product $\prod_{n=0}^{\infty} \frac{1}{\varphi^n(w)} \varphi^n(\psi(z))$ converges uniformly on compact subsets of U and

$$g(z) = g(w) \prod_{n=0}^{\infty} \frac{1}{\varphi(w)} \varphi^n(\psi(z)).$$

(2)

Proof. Let $g(w) \neq 0$ and $\varphi \circ g \circ \psi = \lambda g$ for some non-zero scalar λ. Then $\lambda = \varphi(w)$ and for integer $n \geq 1$,

$$\left(\prod_{i=0}^{n-1} \varphi(\psi_i(z)) \right) g(\psi_n(z)) = \lambda^n g(z) = \varphi(w)^n g(z)$$

and so

$$\left(\prod_{i=0}^{n-1} \frac{1}{\varphi(\psi_i(z))} \right) g(\psi_n(z)) = g(z) \quad (z \in U, n \geq 1) \quad (3)$$

where ψ_0 is the identity map on U. Since $g(\psi_n(z)) \to g(w)$, the infinite product $\prod_{i=0}^{+\infty} \frac{1}{\varphi(\psi_i(z))}$ converges in $H(U)$ to $g(w)^{-1} g(z)$ and (2) is deduced. □

The next proposition shows the iterate sequence of holomorphic self maps can exhibit a stronger form of convergence to the Denjoy-Wolff point.

Proposition 2.2. The series

$$\sum_{n=1}^{+\infty} |\psi_n(z) - w|^\beta$$

(4)

converges uniformly on compact subsets of U whenever

1. ψ is not parabolic and $\beta > 0$, or
2. ψ is parabolic automorphic and $\beta = 2$.
Proof. Suppose \(\psi \) is not of parabolic type. Then it is either of dilation or hyperbolic type. Let \(\psi \) be of dilation type and \(w \in U \). Then zero is the Denjoy-Wolff point of the self map \(\alpha_w \circ \psi \circ \alpha_w \) where \(\alpha_w(z) = \frac{z-w}{1-wz} \). Choose \(\delta > 0 \) with \(|\psi'(w)| < \delta < 1 \). So \(|\alpha_w \circ \psi \circ \alpha_w(z)| < \delta |z| \) when \(z \) is sufficiently near to zero. If \(K \) is a compact subset of \(U \), then by the Denjoy-Wolff Theorem, \(\alpha_w \circ \psi_n \circ \alpha_w \rightarrow 0 \) uniformly on \(K \) and \(|\alpha_w \circ \psi_{n+k} \circ \alpha_w(z)| < \delta^k |\alpha_w \circ \psi_n \circ \alpha_w(z)| \) for sufficiently large \(n \), every positive integer \(k \), and \(z \in K \). Upon replacing \(\alpha_w(z) \) instead of \(z \) in the previous inequality, we get

\[
\frac{|\psi_{n+k}(z) - w|}{2} \leq |\alpha_w(\psi_{n+k}(z))| \leq \delta^k |\alpha_w(\psi_n(z))| \tag{5}
\]

Now suppose \(\psi \) is hyperbolic and \(w \in \partial U \), then \(0 < \psi'(w) < 1 \) and by Julia-Caratheodory Inequality ([1], Theorem 3.1) we get

\[
\frac{|\psi(z) - w|^2}{1 - |\psi(z)|^2} < \psi'(w) \frac{|z - w|^2}{1 - |z|^2} \quad (z \in U).
\]

By substituting \(\psi_n(z) \) for \(z \), we get

\[
\frac{|\psi_n(z) - w|^2}{1 - |\psi_n(z)|^2} < (\psi'(w))^n \frac{|z - w|^2}{1 - |z|^2} \quad (z \in U, n \geq 0)
\]

Now if \(K \) is a compact subset of \(U \), then the right hand of the above inequality is bounded on \(K \). Hence it follows that

\[
|\psi_n(z) - w| < \text{const.}(\psi'(w))^n \quad (z \in K) \tag{6}
\]

Thus the inequality (5) and (6) imply that (4) converges uniformly on compact subsets of \(U \) for \(\beta > 0 \). For the next part let \(\psi \) be of parabolic automorphic type. The Linear-Fractional Model Theorem [2, 8, 9] then provides a function \(\sigma \) holomorphic on \(U \) with values in the right half-plane such that \(\sigma \circ \psi = \sigma + ib \) for some real \(b \neq 0 \). Hence more generally \(\sigma \circ \psi_n = \sigma + nib \). Let \(K \) be an arbitrary compact subset of \(U \). For \(n \geq 1 \), pick \(z_n \in K \) such that \(|\psi_n(z_n)| \leq |\psi_n(z)| \) for all \(z \in K \).

The Blaschke condition for a sequence \((z_n) \) in \(U \) is equivalent, via the map \(w = \frac{1+z}{1-z} \), to the condition

\[
\sum_n \frac{\text{Rew}_{n}}{|1 + w_n|^2} < \infty \tag{7}
\]
for sequences \((w_n)\) in the right half-plane. Since the sequence \((\sigma(z_n))\) is bounded, so (7) is to be satisfied by the sequence \(w_n = \sigma(z_n) + nib\), which is therefore, the zero-sequence of a bounded holomorphic function \(F\) on the right half-plane (see [3] Theorem 11.3, page 191). The function \(f = F \circ \sigma\) is then a non-constant bounded holomorphic function on \(U\), and for \(n \geq 1:\)

\[
f(\psi_n(z_n)) = F(\sigma(\psi_n(z_n))) = F(\sigma(z_n) + nb) = 0
\]

Thus some nonconstant bounded holomorphic functions on \(U\) vanishes at each point of the sequence \((\psi_n(z_n))\), so that sequence satisfies the Blaschke condition. On the other hand, by the Julia-Caratheodory Inequality,

\[
|\psi_n(z) - w|^2 \leq \text{const}(1 - |\psi_n(z)|^2) \leq \text{const}(1 - |\psi_n(z_n)|^2)
\]
on \(K\). Thus (4) uniformly converges on \(K\) for \(\beta = 2\). \(\square\)

Recall that for any \(w \in U\) and positive real number \(\beta\), we denote by \(\text{Lip}_\beta(w)\), the class of holomorphic functions \(\varphi\) satisfying

\[
|\varphi(z) - \varphi(w)| = O(|z - w|^{\beta}) \quad (z \to w)
\]

(8)

For example if \(\varphi \in H(U)\) is analytic at \(w\), then \(\varphi \in \text{Lip}_\beta(w)\) for \(\beta \in (0, 1]\). Moreover, if \(\varphi^{(i)}(w)\) exists and equal to zero for \(i = 1, \ldots, n\) then \(\varphi \in \text{Lip}_\beta(w)\) for \(\beta \in (0, n + 1]\).

Theorem 2.3. Let \(\varphi \in \text{Lip}_\beta(w)\) and \(\varphi(w) \neq 0\) then the function \(g(z)\) defined by equation (1) is an eigenfunction for \(C_{\varphi, \psi}\), whenever

1. \(\psi\) is of dilation type, or
2. \(\psi\) is of hyperbolic type and \(\beta > 0\), or
3. \(\psi\) is of parabolic automorphism type and \(\beta = 2\).

Proof. Assume that \(\varphi \in \text{Lip}_\beta(w)\) for some real number \(\beta\) and \(K\) is a compact subset of \(U\). Since \(\psi_n \to w\) uniformly on \(K\), by substituting \(\psi_n(z)\) instead of \(z\) in (8) we get

\[
|\varphi(w) - \varphi(\psi_n(z))| = O(|w - \psi_n(z)|^\beta) \quad (z \in K, n \to \infty)
\]
whence

\[|1 - \frac{1}{\varphi(w)}\psi_n(z)| = O\left(\frac{1}{|\varphi(w)|}|w - \psi_n(z)|^\beta \right) \quad (z \in K, n \to \infty). \]

Now if \(\psi \) is hyperbolic and \(\beta > 0 \) or \(\psi \) is parabolic automorphism and \(\beta = 2 \) then by pervious Proposition, \(\sum_{n=0}^{\infty} |1 - \frac{1}{\varphi(w)}\psi_n(z)| \) and consequently \(g(z) = \prod_{n=0}^{\infty} \frac{1}{\varphi(w)}\varphi(\psi_n(z)) \) converges uniformly on \(K \). Thus (1) is indeed an eigenfunction for \(C_{\varphi,\psi} \) and the proof is complete. □

References

Hamid Rezaei

Department of Mathematics
Assistant Professor of Mathematics
Yasouj University
Yasouj, Iran

E-mail: hrezaei81@yahoo.com