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M. Rodŕıguez
Universidad Veracruzana

Abstract. We define the notions of algebraic and arithmetic deriva-
tion. As an application, we use the combinatorial decomposition of an
ideal to provide a constructive method to find the algebraic invariants,
as the arithmetical rank, for a family of squarefree monomial ideals,
the k-complete ideals Ink , also known as squarefree Veronese ideals of
degree k.

AMS Subject Classification: 13A15; 05E40; 05E45
Keywords and Phrases: Arithmetical rank, Lyubeznik resolution,
monomial ideal, projective dimension

1. Introduction

Let A be Noetherian commutative ring with identity. We say that some
elements r1, . . . , rm in A generate an ideal I of A up to radical if

√
I =


(r1, . . . , rm).

The smallest m with this property is called the arithmetical rank of I,
denoted by ara(I). Excellent reference for the arithmetical rank is [1].
Let projdimR(R/I) the projective dimension of R/I, i.e., the length of a
minimal free resolution of R/I. Let H i

I(R) denote the i− th local coho-
mology module of R with respect to I. The cohomological dimension of
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I is defined to be the natural number: cd(I) = max{i|H i
I(R) = 0}. We

shall throughout suppose that R is the polynomial ring K[x1, . . . , xn].
From the expression of the local cohomology modules in terms of Čech
complex, one can see that ([5, Theorem 5.4] Huneke-desigualdad) for all
ideals I in a commutative Noetherian ring cd(I)  ara(I). We recall that
for I monomial ideal, ara(I) = ara(

√
I) with

√
I a squarefree monomial

ideal (See [1]). By Lyubeznik [9, Theorem 1]Lyubeznik-local-coho, for all
squarefree monomial ideal I one has that projdim(R/I) = cd(I). There-
fore

ht(I)  projdim(R/I) = cd(I)  ara(I)  µ(I). (1)

Let us explain the organization of this paper. In Section 2, we introduce
the notion of algebraic derivation and establish some results when this
derivation is zero, one and two. In Section 3, we define the arithmetic
derivation and we present some results when the ideal has arithmetic
derivation zero and one. In Section 4 we recall the main results about
Lyubeznik resolutions. Finally, in Section 5 we provide a constructive
method to find the algebraic invariants of the family of k–complete ideals
and we establish some results about the arithmetical rank, projective
dimension and other invariants for this family.

2. Algebraic Derivation

We introduce the notion of algebraic derivation for an ideal I and we see
that when this is equal to 0, 1 or 2 the equality ara(I) = projdim(R/I)
holds. We compute the algebraic derivation for the only example in the
literature, the case when projdim(R/I) = ara(I), and we obtain that
its algebraic derivation is 7.

Definition 2.1. For an ideal I in R, we define the algebraic derivation
of a monomial ideal I by

dalg(I) = µ(I)− ht(I).
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Proposition 2.2. Let I be a squarefree monomial ideal. If dalg(I) = 0,
then we have ara(I) = projdim(R/I).

Proof. ht(I) = projdim(R/I) = cd(I) = ara(I) = µ(I). 

Theorem 2.3. ([7]) Let I be a squarefree monomial ideal.

(i) If µ(I)− projdim(I)  1, then we have ara(I) = projdim(R/I).

(ii) If dalg(I) = 2, then we have ara(I) = projdim(R/I).

Corollary 2.4. Let I be a squarefree monomial ideal. If dalg(I) = 1,
then we have ara(I) = projdim(R/I).

Remark 2.5. In general, projdim(R/I) = ara(I). The only example
in the literature is the following monomial ideal. Let I0 be a monomial
ideal of R = K[x1x2x3x4x5x6], defined by

x1x2x3, x1x2x4, x1x3x5, x1x4x6, x1x5x6,
x2x3x6, x2x4x5, x2x5x6, x3x4x5, x3x4x6,

the Stanley-Reisner ideal of Reisner’s triangulation of P 2(R), with 6
vertices. Then µ(I0) = 10 and ht(I0) = 3. If the characteristic of K is
not 2, then projdim(R/I0) = ht(I0) (i.e. I0 is Cohen-Macaulay). But
Z. Yan [14] showed ara I0 = 4 using the étale cohomology. Therefore
projdim(R/I0) < ara(I0). Furthermore, dalg(I0) = µ(I0) − ht(I0) =
10− 3 = 7.

3. Arithmetic Derivation

We introduce the notion of arithmetic derivation for a monomial ideal I.
We see that ara(I) = projdim(R/I) holds when its arithmetic derivation
is equal to 0 or 1.

Let I = µ1, µ2, . . . µf ,  be a monomial ideal in R = K[x1, . . . , xn] and

0→


j

R(−j)βp j → · · · →


j

R(−j)β1 j →


j

R(−j)β0 j → I → 0,



104 L. A. DUPONT, D. MENDOZA AND M. RODRIGUEZ

a graded minimal free resolution of I over R. Here, p is called the
projective dimension of I over R and denote it by projdim(I). Put
βi =


j βi j . We have projdim(R/I) = projdim(I) + 1, βi j(I) =

β(i+1) j(R/I), βi(I) = β(i+1)(R/I), µ(I) = β0(I) and β0 j(I) = |{µi :
deg(µi) = j}|. Recall the following relevant definitions :
The initial degree of I, indeg(I) = min{j : β0 j(I) = 0}.
The relation type of I, rt(I) = max{j : β0 j(I) = 0}.
The (Castelnuovo–Mumford) regularity of I, reg(I) = max{j − i :
βi j(I) = 0}.
We say that I has linear resolution if reg(I) = indeg(I). The arithmetic
degree of a squarefree monomial ideal I is arithdeg(I) = |Ass(R/I)|.
For squarefree monomial ideals, we have the following relations:

Theorem 3.1. ([4, 2]) Let I be a squarefree monomial ideal. Then we
have

indeg(I)  reg(I)  arithdeg(I). (2)

Definition 3.2.We define the arithmetic derivation darith(I) of a mono-
mial ideal I by

darith(I) = arithdeg(I)− indeg(I).

Theorem 3.3. Let I be a squarefree monomial ideal.

(i) ([10, 11]) If darith(I) = 0, then ara(I) = projdim(R/I).

(ii) ([7]) If darith(I) = 1, then ara(I) = projdim(R/I).

Note that for I0, the ideal in Remark 2.5, we have
I0 = x1, x2, x3 ∩ x1, x2, x4 ∩ x1, x2, x5, x6 ∩ x1, x3, x5

∩x1, x4, x6 ∩ x1, x5, x6 ∩ x2, x3, x4, x5 ∩ x2, x3, x6
∩x2, x4, x5 ∩ x2, x5, x6 ∩ x3, x4, x5 ∩ x3, x4, x6
∩x1, x3, x4, x6,

where arithdeg(I0) = 13, indeg(I0) = 3 and darith(I0) = 10.
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4. Lyubeznik Resolution

In 1988, Lyubeznik [8] constructed a graded free resolution of R/I as a
subcomplex of the Taylor resolution of R/I.

Definition 4.1. Let m1,m2, . . . ,mµ be an ordered sequence of µ mono-
mials of R, let I be the ideal generated by these monomials. For all
sequences (i1; i2; . . . ; it), where 1  i1 < i2 < · · · < it  µ, the symbol
u(i1; i2; . . . ; it) will be called L-admissible of dimension t if:

mq does not divide lcm(mih ,mih+1
, . . . ,mit)

for all h < t and q < ih.

Set L0 = R and for all t = 1, 2, . . . , µ let Lt be the free R-module
generated by all L-admissible symbols of dimension t. Define the map
∂t : Lt → Lt−1 by setting

∂t(u(i1; i2; . . . ; it)) =
t

j=1

(−1)j+1 lcm(mi1 ,mi2 , . . . ,mit)
lcm(mi1 ,mi2 , . . .mij , . . . ,mit)

u(i1; i2; . . . ; ij ; . . . ; it).

The Lyubeznik resolution of I is a subcomplex of the Taylor resolution
of R/I generated by all L-admissible symbols.
For two L-admissible symbols u(i1; i2; . . . ; is) and u(j1; j2; . . . ; jt), we say
that

u(i1; i2; . . . ; is)  u(j1; j2; . . . ; jt)

if i1, i2, . . . , is is a subsequence of j1, j2, . . . , it. Evidently, if u(j1; j2; . . . ; jt)
is L-admissible, so are all smaller symbols. Hence every Lyubeznik res-
olution is uniquely determined by its maximal L-admissible symbols.

Definition 4.2. A symbol u(i1; i2; . . . ; it) is stable of I, if for all 1 
q  t

lcm(mi1 ,mi2 , . . . ,mit) = lcm(mi1 ,mi2 , . . . miq , . . . ,mit).

Note that if u(i1; i2; . . . ; it) is stable, then also are all smaller L-admissible
symbols.
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Let m be the homogeneous maximal ideal of R, i.e., m = x1, x2, . . . , xn.
L• is minimal if and only if ∂t(Lt) ⊆ mLt−1 for all t. By the construction
of ∂t, L• is minimal if and only if for all maximal L-admissible symbols
u(i1; i2; . . . ; it), u is stable. We have the following proposition:

Proposition 4.3. The Lyubeznik resolution of I with respect to some
order of monomial generators is the minimal free resolution if and only
if all maximal L-admissible symbols u(i1; i2; . . . ; it) are stable. In partic-
ular,

βt j(R/I) = βt−1 j(I) and βt−1 j(I) =

|{u(i1; i2; . . . ; it) : u is L-admissible; j = deg(lcm(mi1 ,mi2 , . . . ,mit))}|.

Definition 4.4. For a monomial ideal I, let G(I) be its minimal set
of monomial generators. If there is a total order on G(I) such that the
corresponding Lyubeznik resolution of I is a minimal free resolution of
I, then I is called a Lyubeznik ideal.

We define L≺(I) as the length of Lyubeznik resolutions of I with re-
spect to the order ≺. The most important theorem that relates to the
Lyubeznik resolution and the arithmetical rank is as follows:

Theorem 4.5. [6] Let I be a squarefree monomial ideal of R and ≺
be a monomial order. Then ara(I)  L≺(I). In particular, if I is a
Lyubeznik ideal, then ara(I) = projdim(R/I).

5. K-Complete Ideals

Finally, in this section we give a method to find the algebraic invariants
of a family of monomial ideals, the k-complete ideals, which are indeed
Lyubeznik ideals. As application we show that for each positive integer
m, there exists an ideal I in this family with algebraic derivation m, and
there is an ideal with arithmetic derivation m.

Let R = K[x1, . . . , xn] be a polynomial ring over a field K and let
v1, . . . , vq be the column vectors of a matrix A = (aij) whose entries
are non-negative integers. For technical reasons, we shall always assume
that the rows and columns of the matrix A are different from zero. As
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usual we use the notation xa := xa11 · · ·xann , where a = (a1, . . . , an) ∈ Nn.
Consider the monomial ideal:

I = (xv1 , . . . , xvq) ⊂ R,

generated by F = {xv1 , . . . , xvq}.
A clutter C, with finite vertex set V = {x1, ..., xn} is a family of subsets
of V , called edges, none of which is included in another. The set of
vertices and edges of C are denoted by V (C) and E(C) respectively. For
example, a simple graph (no multiple edges or loops) is a clutter. The
edge ideal of C, denoted by I(C), is the ideal of R generated by all
monomials xe =


xi∈e xi such that e ∈ E(C). The map

C −→ I(C),

gives an one-to-one correspondence between the family of clutters and
the family of squarefree monomial ideals. Edge ideals of graphs were
introduced and studied in [13].

Let A be the incidence matrix of C whose column vectors are v1, . . . , vq.
The set covering polyhedron of C is given by:

Q(A) = {x ∈ Rn|x  0; xA  1}.

A subset C ⊂ V (C) is called aminimal vertex cover of C if: (i) every edge
of C contains at least one vertex of C, and (ii) there is no proper subset
of C with the first property. The map C →


xi∈C ei gives a bijection

between the minimal vertex covers of C and the integral vectors of Q(A),
(see [12]). A polyhedron is called an integral polyhedron if it has only
integral vertices. A clutter is called d–uniform or uniform if all its edges
have exactly d vertices.

We recall the following result in algebraic combinatorics that relates the
minimal vertex covers of a clutter with the primary decomposition of a
monomial ideal.

Proposition 5.1. Let C1, C2, . . . , Cs be the minimal vertex covers of a
clutter C. Then the primary decomposition of I(C) is C1 ∩ C2 ∩ · · · ∩
Cs, where Ci = xj |xj ∈ Ci.
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Now, we recall a family of squarefree monomial ideals as defined in [3]
(also known as Veronese ideals), the k-complete ideal Ink with k  n,

Ink = xi1xi2 · · ·xik |1  i1 < i2 < · · · < ik  n,

in R = K[x1, x2, . . . , xn].

The corresponding induced clutter is C(Ink ) = {{xi1 , xi2 , . . . , xik}|1 
i1 < i2 < · · · < ik  n}. We obtain that the set of minimal vertex cover
consisting of all the subset of {x1, x2, . . . , xn} with cardinality n−1+k.
It follows readily that the primary decomposition of Ink is

Ink =


1i1<i2<···<in+1−kn
xi1 , xi2 , . . . , xin+1−k.

Hence µ(Ink ) =
�
n
k


, rt(Ink ) = k, indeg(Ink ) = k, ht(Ink ) = n + 1 − k,

arithdeg(Ink ) =
�

n
n+1−k


.

We have immediately the following results

Proposition 5.2. If m is a natural number, then there are two natural
numbers k  n such that

dalg(Ink ) = m.

Proof. dalg(Im+2m+1 ) = µ(Im+2m+1 ) − ht(Im+2m+1 ) =
�
m+2
m+1


− ((m + 2) + 1 −

(m+ 1)) = (m+ 2)− 2 = m. 

Proposition 5.3. If m is a natural number, then there are two natural
numbers k  n such that

darith(Ink ) = m.

Proof. darith(Im+22 ) = arithdeg(Im+22 ) − indeg(Im+22 ) =
�

m+2
m+2+1−2


−

2 =
�
m+2
m+1


− 2 = (m+ 2)− 2 = m. 

Consider the lexicographical order on the variables x1 < x2 < · · · < xn
and the total order induced on the monomialsG(Ink ) = {xi1xi2 · · ·xik |1 
i1 < i2 < · · · < ik  n}. The symbol u(i1; i2; . . . ; it) will be L-admissible
of dimension t if
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(∗) For all j, the monomial ij has a variable x which is not in the
monomial ij−1.

() There is at least one variable x in the monomial i1 that is not found
in all the monomials previous.

Therefore, all L-admissible symbol of dimension n+1− k is necessarily
maximal. In addition, any L-admissible symbol can be refined in a L-
admissible symbol of dimension n + 1 − k. With this we can conclude
the following

Lemma 5.4. The symbol u(i1; i2; . . . ; it) is a maximal L-admissible sym-
bol if and only if
u(i1; i2; . . . ; it) satisfies the conditions (∗), () and t = n+ 1− k.

Proposition 5.5. If Ink is a k-complete ideal, then

ara(Ink ) = projdim(R/Ink ) = n+ 1− k.

Proof. Let be u(i1; i2; . . . ; it) a maximal L-admissible symbol. By (∗),
each monomial mij has a variable that is not in the other monomials,
for all j. Hence

lcm(mi1 ,mi2 , . . . ,mit) = lcm(mi1 ,mi2 , . . . miq , . . . ,mit); for all 1  q  t.

Therefore, u(i1; i2; . . . ; it) is stable. The Proposition 4.3 ensures that
the corresponding Lyubeznik resolution of Ink is a minimal free reso-
lution of I, i.e., Ink is a Lyubeznik ideal. By Theorem 4.5, ara(Ink ) =
projdim(R/Ink ). Furthermore,

projdim(R/Ink ) = projdim(Ink ) + 1 =

max{i|βij(Ink ) = 0 for some j} = n+ 1− k.

We conclude that

ara(Ink ) = projdim(R/Ink ) = n+ 1− k. 

We can summarize the above results in the following theorem.
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Theorem 5.6. For each natural number m, there are Lyubeznik ideals
I and J such that dalg(I) = m and darith(J) = m.

In this family of monomial ideals, the Equation (1) becomes the following
equation

ht(Ink ) = projdim(R/Ink ) = cd(Ink ) =

ara(Ink ) = n+ 1− k  µ(Ink ) =

n

k


. (3)

Now we will calculate the regularity of the ideal Ink .

Lemma 5.7. If Ink is a k-complete ideal with n = kq, then reg(Ink ) =
n+ 1− q.

Proof. The regularity of Ink is given by

reg(Ink ) = max{j − t : βt j(Ink ) = 0},

equivalently

reg(Ink ) = max{j − t : u(i1; i2; . . . ; it+1),

with
u L-admissible ; j = lcm(mi1 ,mi2 , . . . ,mit+1))}.

We conclude that
reg(Ink ) = n− (q − 1),

because the maximum is reached in the element

u(x1 · · ·xk;xk+1 · · ·x2k; . . . ;x(q−1)k+1 · · ·xqk),

with deg(lcm(u)) = n. 

Lemma 5.8. If Ink is a k-complete ideal with n = kq+ r and 0 < r < q,
then reg(Ink ) = n− q.

Proof. Here the maximum is reached in the element

u(x1 · · ·xk;xk+1 · · ·x2k; . . . ;x(q−1)k+1 · · ·xqk;xqk+1xqk+2 · · ·xnx1 · · ·xk−r),
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with deg(lcm(u)) = n. Therefore, the regularity of Ink is given by
reg(Ink ) = n− q. 

Proposition 5.9. If Ink is a k-complete ideal, then reg(Ink ) = n+1−nk ,
where nk  is the smallest integer not less than

n
k .

Proof. It follows directly from the Lemmas 5.7 and 5.8. 
The following result can also be deduced from de fact that Ink is poly-
matroidal [3], which implies that this ideal has linear quotients.

Proposition 5.10. The ideal Ink has linear resolution if and only if
k = n or k = n− 1.

Proof. The ideal Ink has linear resolution if and only if reg(I
n
k ) = n +

1 − nk  = k = indeg(Ink ). In the case n = kq, it has to be reg(Ink ) =
n + 1 − q = k = indeg(Ink ) if and only if k = n. In the other case,
n = kq+ r with 0 < r < q, it has to be reg(Ink ) = n− q = k = indeg(Ink )
if and only if k = n− 1. 
From the Equation (2) we obtain the following

indeg(Ink ) = k  reg(Ink ) =

n+ 1−  n
k   arithdeg(Ink ) =


n

n+ 1− k


. (4)

To finish, we describe explicitly which are the elements g1, g2, . . . , gn+1−k
that generate the ideal


g1, g2, . . . , gn+1−k =


Ink in where the arith-

metical rank is reached. Following an argument of Kimura in [6. p. 3629],
we obtain that if we define elements
g1 = x1x2 · · ·xk−1xk,
g2 = x1x2 · · ·xk−1xk+1 +


mi1mi2 · · ·min−k

where the sum is over all the u(i1; i2; . . . ; in−k) L-admissible with i1  3,
...
gl = x1x2 · · ·xk−1xk+(l−1) +


mi1mi2 · · ·min+1−k−(l−1)

where the sum is over all the u(i1; i2; . . . ; in+1−k−(l−1)) L-admissible with
i1  (l + 1),
...
g(n+1−k)−1 = x1x2 · · ·xk−1xn−1 +


mi1mi2
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where the sum is over all the u(i1; i2) L-admissible with i1  (n+1−k),
gn+1−k = x1x2 · · ·xk−1xn +


mi1

where the sum is over all the i1  (n+ 1− k) + 1,
then 

g1, g2, . . . , gn+1−k =


Ink .
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