Closability of Module σ–Derivations

M. Mosadeq∗
Mashhad Branch, Islamic Azad University

M. Hassani
Mashhad Branch, Islamic Azad University

A. Niknam
Ferdowsi University

Abstract. Let σ be a linear mapping from a dense subalgebra A of a Banach algebra B into B. In this note, we study the closability of a module σ– derivation δ from A into a B– bimodule M. Applying the notions of torsion-free modules and essential ideals, we present several results concerning the closability of such derivations. Also we investigate the closability of module σ– derivations of the C^*– algebra B into a Hilbert B– bimodule M.

AMS Subject Classification: 46H40; 46L57; 46L08.
Keywords and Phrases: $(\sigma -)$ Derivation, deficiency indices, relative boundedness, simple module, torsion-free module, essential ideal, Hilbert C^*– module.

1. Introduction

Throughout the paper, A is a dense subalgebra of a Banach algebra B and M is a Banach B– bimodule. We recall that a linear mapping $\delta : A \to M$ is a (module) derivation if $\delta(ab) = \delta(a)b + a\delta(b)$ for all $a, b \in A$. A derivation δ is said to be inner if there exists an element $u \in M$ such that $\delta(a) := ua - au$, for all $a \in A$. Recently, a number of
analysts have studied various generalized notions of derivations in the context of Banach algebras. As an example, suppose that \(\sigma : A \to B \) is a homomorphism. If for every \(u \in M \), we take \(\delta_u : A \to M \) by \(\delta_u(a) := u\sigma(a) - \sigma(a)u \), then it is easily seen that \(\delta_u(ab) = \delta_u(a)\sigma(b) + \sigma(a)\delta_u(b) \) for all \(a, b \in A \). Therefore considering the relation \(\delta(ab) = \delta(a)b + a\delta(b) \) as an special case of \(\delta(ab) = \delta(a)\sigma(b) + \sigma(a)\delta(b) \) for all \(a, b \in A \), where \(\sigma : A \to B \) is a linear mapping, leads the theory of derivations to be extensively developed.

The above consideration motivated the authors in [8,9] to generalize the notion of derivation as follows:

Let \(\sigma : A \to B \) be a linear mapping. By a (module) \(\sigma \)– derivation we mean a linear mapping \(\delta : A \to M \) such that \(\delta(ab) = \delta(a)\sigma(b) + \sigma(a)\delta(b) \) for all \(a, b \in A \). In order to construct a \(\sigma \)– derivation, suppose that \(u \) is an element of \(M \) satisfying

\[
u (\sigma(ab) - \sigma(a)\sigma(b)) = (\sigma(ab) - \sigma(a)\sigma(b)) u.\]

Then the mapping \(\delta_u^\sigma \) defined by \(\delta_u^\sigma(a) := u\sigma(a) - \sigma(a)u \) is a module \(\sigma \)– derivation which is called inner. Note that if \(\sigma \) is an endomorphism, then \(u \) can be any arbitrary unitary element of \(M \). It is easy to see that if \(\sigma \) is bounded, then the module \(\sigma \)– derivation \(\delta_u^\sigma \) is bounded. The reader is referred to [5,8,9,10] for more details on \(\sigma \)– derivations.

A linear mapping \(\delta : A \to M \) is called closable if it has a closed linear extension. For a linear mapping \(\delta : A \to M \), we let \(S(\delta) \) denote the set

\[
\{ x \in M : \text{there is a sequence } \{a_n\} \text{ in } A \text{ with } a_n \to 0 \text{ and } \delta(a_n) \to x \}
\]

and call it the separating space of \(\delta \, \). \(\delta \) is closable iff \(S(\delta) = \{0\} \)[15]. It is obvious that if \(\delta \) is continuous, then it is closable but the converse does not hold in general. We refer the reader to [4,13,14] for more information on the concept of closability. In this note as a main result we show that if \(\sigma \) is a continuous surjective linear mapping and \(\delta \) is a module \(\sigma \)– derivation, then the separating space \(S(\delta) \) is bimodule and applying this result we conclude the closability of a \(\sigma \)– derivation \(\delta \) under some restrictions on the codimensions of the sets \(\{a \pm \delta(a) : a \in A\} \) which are called the deficiency indices.

Let \(\delta_0 : A \to M \) be a linear mapping. Following [14], a module \(\sigma \)– derivation \(\delta \) is called relative bounded with respect to \(\delta_0 \) (or briefly \(\delta_0 \)–...
bounded) if there exist $\alpha, \beta > 0$ such that $\| \delta(a) \| \leq \alpha \| a \| + \beta \| \delta_0(a) \|$, for all $a \in A$. Among other facts we show that for a linear operator $\delta_0 : A \to M$ and a $\delta_0 -$ bounded module $\sigma -$ derivation δ if there exists a core D for δ_0 such that the restriction of δ on D is closable, then δ is closable.

For an element a in a unital Banach algebra A, let $sp(a)$ be the set of all complex number λ such that $\lambda - a$ is not invertible in A and call it the spectrum of a. The spectral radius of a is defined by $\nu(a) := \sup \{ | \lambda | : \lambda \in sp(a) \}$. An element a is called quasi-nilpotent if $\nu(a) = 0$. The set of all quasi-nilpotents is denoted by $Q(A)$. An algebra A is called semi-simple if $\text{rad}(A) = \{0\}$, where $\text{rad}(A)$ is defined to be the intersection of the maximal ideals in A, ([See 3]).

Let B be a C^*- algebra and M be a complex linear space which is a left $B-$ module and $\lambda(bx) = (\lambda b)x = b(\lambda x)$, where $\lambda \in \mathbb{C}$, $b \in B$ and $x \in M$. The space M is called a left pre-Hilbert $B-$ module, if there exists a $B-$ valued inner product $<, > : M \times M \to B$ such that for every $x, y, z \in M$, $\lambda \in \mathbb{C}$ and $b \in B$, satisfies the following conditions:

(i) $< x, x > \geq 0$
(ii) $< x, x > = 0$ if and only if $x = 0$
(iii) $< x + \lambda y, z > = < x, z > + \lambda < y, z >$
(iv) $< x, y > = < y, x >^*$
(v) $< ax, y > = a < x, y >$.

Similarly, we can define a right pre-Hilbert $B-$ module. The left (right) pre-Hilbert $B-$ module M is called Hilbert $B-$ module if it is a Banach space with respect to the norm $\| x \| := \| < x, x > \|^{\frac{1}{2}}$. The Hilbert module M is called full if the closed linear span $< M, M >$ of all elements of the form $< x, y >$ $(x, y \in M)$ is equal to B. Let M be a right pre-Hilbert $B-$ module with the inner product $<, >_1$ and a left pre-Hilbert $B-$ module with the inner product $<, >_2$. Then M is a pre-Hilbert $B-$ bimodule if for every $x, y, z \in M$ and for each $a, b \in B$, the following conditions hold:

(i) $< x, y >_2 z = x < y, z >_1$
(ii) $< bx, bx >_1 \leq \| b \|^2 < x, x >_1$ and $< xa, xa >_2 \leq \| a \|^2 < x, x >_2$.

In [7] it is shown that if M is a pre-Hilbert $B-$ bimodule, then
∥x∥:=∥<x,x>₁²∥₁₂=∥<x,x>₂₂₁₂ defines a norm on M. We also investigate the closability of module σ− derivations from a dense subalgebra A of a C∗− algebra B into Hilbert B− bimodule M.

2. The Results

Theorem 2.1. Let δ : A → M be a bounded below module σ− derivation such that S(δ) = R(δ). Then δ = 0. In particular, δ is closable.

Proof. Let x ∈ S(δ). Then there exists a sequence {aₙ} in A such that aₙ → 0 and δ(aₙ) → x. Since x ∈ S(δ) = R(δ), so δ(a) = x for some a ∈ A. Also δ is bounded below hence there exists C > 0 such that C ∥a∥ ≤ ∥δ(a)∥ for all a ∈ A. This implies that δ is an injection and δ⁻¹ is bounded. Therefore aₙ → δ⁻¹(x) = a. But aₙ → 0 thus a = 0 and x = δ(a) = 0. □

Theorem 2.2. Let M be a simple B− bimodule in the sense that it has no non-trivial two-sided submodule, σ : A → B be a surjective continuous linear mapping and let δ : A → M be a module σ− derivation. Then either δ is closable or the range R(δ) of δ is dense in M.

Proof. It is obvious that S(δ) is a closed subspace of M. We show that S(δ) is a two-sided submodule of M. Let b ∈ B and x ∈ S(δ). Thus there is a sequence {aₙ} in A such that aₙ → 0 and δ(aₙ) → x. Since σ is a surjection, so there exists c ∈ A such that σ(c) = b. Hence caₙ → 0 and by continuity of σ we have δ(caₙ) = σ(c)δ(aₙ) + δ(c)σ(aₙ) → bx. Thus bx ∈ S(δ). A similar argument shows that xb ∈ S(δ). By the hypothesis S(δ) = {0} or S(δ) = M. Therefore δ is closable or the range of δ is dense in M. □

Since every simple Banach algebra B is itself a simple A− bimodule, we have the two following results.

Corollary 2.3. Let A be a dense subalgebra of a simple Banach algebra B, σ : A → B be a surjective continuous linear mapping and let δ : A → B be a σ− derivation. Then either δ is closable or both of the sets {a ± δ(a) : a ∈ A} are dense in B.
Proof. Following as stated in the proof of Theorem 2.2, one can observe that \(S(\delta) \) is a two-sided ideal in \(B \). If \(S(\delta) = \{0\} \), then \(\delta \) is closable. In the case that \(S(\delta) = B \), then \(R(\delta) \) is dense in \(B \). Hence both of the sets \(\{a + \delta(a) : a \in A\} \) are dense in \(B \). □

Corollary 2.4. Let \(A \) be a dense subalgebra of a simple Banach algebra \(B, \sigma : A \to B \) be a surjective continuous linear mapping and let \(\delta : A \to B \) be a \(\sigma \)-derivation such that the set \(\{a + \delta(a) : a \in A\} \) is closed. Then either \(\delta \) is closable or the map from \(A \) into \(B \) which takes \(a \mapsto a + \delta(a) \) is onto.

Proof. Follows from the Corollary 2.3.

The proof of the following result is exactly similar to the method has been used in [13]. □

Theorem 2.5. Let \(A \) be a dense subalgebra of a simple unital Banach algebra \((B, \| \cdot \|), \sigma : A \to B \) be a surjective continuous linear mapping and let \(\delta : A \to B \) be a \(\sigma \)-derivation. Suppose that \((A, | \cdot |) \) is a Banach algebra for some norm \(| \cdot | \), defined on the domain \(A \) of \(\delta \) such that \(\delta : (A, | \cdot |) \to (B, \| \cdot \|) \) is continuous. If the deficiency indices of \(\delta \) are finite and not equal, then \(\delta : A \to B \) is closable.

Remark 2.6. Let \(A \) be a dense subalgebra of a simple \(C^* \)-algebra \((B, \| \cdot \|), \sigma : A \to B \) be a surjective continuous linear mapping and let \(\delta, \delta_0 : A \to B \) be \(\sigma \)-derivations such that \(\delta_0 \) is closed and \(\delta : (A, | \cdot |) \to (B, \| \cdot \|) \) is continuous, where the norm \(| \cdot | \) is defined by \(| a | = \| a \| + \| \delta_0(a) \| \). Since \(\| a \| \leq | a | \), it follows that \(I(a) \) is continuous and therefore \(I \pm \delta \) are continuous maps from \((A, | \cdot |) \) into \((B, \| \cdot \|) \). If one of the deficiency indices of \(\delta \) is finite and non-zero, then one of the two sets \(\{a \pm \delta(a) : a \in A\} \) is closed and not equal to \(B \). Using Corollary 2.4, we conclude that \(\delta \) is closable.

Before we state the next theorem, we need the following useful lemma which can be found in [3].

Lemma 2.7. Let \(A \) be a unital Banach algebra and \(I \) be an ideal in \(A \) with \(I \subseteq Q(A) \). Then \(I \subseteq \text{rad}(A) \). (See [3], Proposition 2.2.3, p 16).

Using the concept of semi-simplicity and the above lemma, we have the
Theorem 2.8. Let A be a dense subalgebra of a unital semi-simple Banach algebra B, $\sigma: A \to B$ be a surjective continuous linear mapping and let $\delta : A \to B$ be a σ- derivation. If $S(\delta)$ is contained in the set of quasi nilpotent elements of B, then δ is closable.

Proof. The method has been used in the proof of Theorem 2.2 shows that $S(\delta)$ is a two-sided ideal in B and by our assumption $S(\delta) \subseteq Q(B)$. Thus $S(\delta)$ is contained in the radical of B. The semi-simplicity of B implies that $S(\delta) = \{0\}$. Hence δ is closable. □

Following the argument as stated in [14], we have the next two results.

Theorem 2.9. Let $\delta, \delta_0 : A \to M$ be module σ- derivations such that δ_0 is closable and δ- bounded. If δ is δ_0- bounded, then is closable.

Proof. Let $x \in S(\delta)$. Thus there is a sequence $\{a_n\}$ in A such that $a_n \to 0$ and $\delta(a_n) \to x$. Since δ_0 is δ- bounded, so there exists a real number $\alpha > 0$ such that

$$\| \delta_0(a_n) - \delta_0(a_m) \| \leq \alpha (\| a_n - a_m \| + \| \delta(a_n) - \delta(a_m) \|)$$

and

$$\alpha (\| a_n - a_m \| + \| \delta(a_n) - \delta(a_m) \|) \to 0 \quad (as \ m, n \to \infty).$$

Thus $\{\delta_0(a_n)\}$ is a Cauchy sequence in the Banach $B-$ module M and hence is convergent. Because of the closability of δ_0, we have $\delta_0(a_n) \to 0$. On the other hand since δ is δ_0- bounded, so there exists a real number $\beta > 0$ such that

$$\| \delta(a_n) \| \leq \beta (\| a_n \| + \| \delta_0(a_n) \|) \to 0 \quad (as \ n \to \infty).$$

Therefore $x = 0$ and hence δ is closable. □

Remark 2.10. Let $\delta, \delta_0 : A \to M$ be module σ- derivations such that δ_0 is closable and δ- bounded. Suppose that $\delta - \delta_0$ is δ- bounded. Hence
there exists two positive numbers α, β such that

$$\| (\delta - \delta_0)(a) \| \leq \alpha \| a \| + \beta \| \delta(a) \| .$$

Therefore

$$\| \delta(a) \| - \| \delta_0(a) \| \leq \alpha \| a \| + \beta \| \delta(a) \| .$$

An easy computation shows that if $1 - \beta > 0$, then δ is δ_0-bounded and by the above theorem, δ is closable.

Before we state the next theorem, we recall the following well-known definition.

Definition 2.11. A subset D of domain $D(\delta_0)$ is called a core for δ_0, if δ_0 is the closure of its restriction on D.

Theorem 2.12. Let $\delta_0 : A \to M$ be a linear operator and $\delta : A \to M$ be a δ_0-bounded module σ-derivation. If there exists a core D for δ_0 such that the restriction $\delta|_D : D \to M$ is closable, then δ is closable.

Proof. First note that since δ is δ_0-bounded, so there exists a positive number β such that

$$\| \delta(a) \| \leq \beta(\| a \| + \| \delta_0(a) \|).$$

Let $x \in S(\delta)$. Thus there is a sequence $\{a_n\}$ in A such that $a_n \to 0$ and $\delta(a_n) \to x$. Let $n \in \mathbb{N}$. Since the subset D of A is a core for δ_0, so there exists a sequence $\{c^n_k\}$ in D such that $c^n_k \to a_n$ and $\delta_0(c^n_k) \to \delta_0(a_n)$. Hence for every fixed n there exist a positive integer N such that $\| c^n_k - a_n \| < \frac{1}{2n}$ and $\| \delta_0(c^n_k) - \delta_0(a_n) \| < \frac{1}{2n}$. Because of the δ_0-boundedness of δ we have

$$\| \delta(c^n_k) - \delta(a_n) \| \leq \beta(\| c^n_k - a_n \| + \| \delta_0(c^n_k) - a_n \|) < \frac{\beta}{n}.$$

Thus

$$\| \delta(c^n_k) - x \| \leq \| \delta(c^n_k) - \delta(a_n) \| + \| \delta(a_n) - x \| \to 0.$$
That is \(\delta(c^n_N) \to x \). But \(\delta |_D : D \to M \) is closable, therefore \(x = 0 \). \(\square \)

Before we state the next theorem, we recall the following well-known definition.

Definition 2.13. Let \(x \) be in an \(A \)-bimodule \(M \). The annihilator \(x^\perp \) of \(x \) is defined by \(x^\perp := \{ a \in A : ax = 0 \} \). Then \(A \)-bimodule \(M \) is called torsion-free if the torsion submodule \(M_t := \{ x \in M : x^\perp \neq \{0\} \} \) be zero. (i.e. for each \(x \in M - \{0\}, \ x^\perp = \{0\}.)

Theorem 2.14. Let \(I \) be a non-zero ideal in a dense subalgebra \(A \) of a Banach algebra \(B \), \(\sigma : A \to B \) be a surjective continuous linear mapping satisfying \(\sigma(I) \neq \{0\} \). Suppose that \(\delta : A \to M \) is a module \(\sigma \)-derivation such that the restriction \(\delta |_I : I \to M \) is closable. If \(S(\delta) \) is a torsion-free module, then \(\delta \) is closable.

Proof. First note that the surjectivity of \(\sigma \) implies that \(S(\delta) \) is a submodule of \(M \). Let \(x \in S(\delta) \). Then there exists a sequence \(\{a_n\} \) in \(A \) such that \(a_n \to 0 \) and \(\delta(a_n) \to x \). It is enough to show that \(x^\perp \neq \{0\} \). For this, let \(a \) be a non-zero element in \(I \) such that \(\sigma(a) \neq 0 \). Then \(aa_n \to 0 \) and by continuity of \(\delta \) we have \(\delta(aa_n) \to \sigma(a)x \). But \(aa_n \in I \) and by the assumption the restriction of \(\delta \) on \(I \) is closable, so \(\sigma(a)x = 0 \). This shows that \(x^\perp \) contains a non-zero element \(\sigma(a) \). Now since \(S(\delta) \) is torsion-free, hence \(x = 0 \). \(\square \)

Theorem 2.15. Let \(A \) be a dense subalgebra of a Banach algebra \(B \), \(M \) be a torsion-free \(B \)-bimodule and let \(\delta : A \to M \) be a non-zero continuous module \(\sigma \)-derivation. Then \(\sigma \) is closable.

Proof. Let \(b \in S(\sigma) \). Then there exists a sequence \(\{a_n\} \) in \(A \) such that \(a_n \to 0 \) and \(\sigma(a_n) \to b \). Let \(x \) be a non-zero element in \(R(\delta) \). So there exists a non-zero element \(a \in A \) such that \(\delta(a) = x \). Hence \(a_n a \to 0 \) and by continuity of \(\delta \) we have \(\delta(a_n a) \to b\delta(a) = bx \). Using the continuity of \(\delta \) once more, we have \(bx = 0 \). This shows that \(b \in x^\perp \) and since \(M \) is torsion-free, hence \(b = 0 \). \(\square \)

Definition 2.16. An ideal \(I \) in an algebra \(B \) is called essential if its annihilator \(I^\perp := \{ b \in B : bI = \{0\} \} \) is zero.
Replacing the module \(M \) by the Banach algebras \(B \) and using the concept of the "essential ideal", we have the following:

Theorem 2.17. Let \(A \) be a dense subalgebra of a Banach algebra \(B \), \(I \) be an essential ideal of \(B \) which is contained in \(A \), \(\sigma : A \to B \) be a continuous linear mapping such that \(\{0\} \neq \sigma(I) \subseteq I \) and \(\delta : A \to B \) be a \(\sigma \)- derivation such that the restriction \(\delta |_I : I \to B \) is closable, then \(\delta \) is closable.

Proof. Let \(b \in S(\delta) \). Then there exists a sequence \(\{a_n\} \) in \(A \) such that \(a_n \to 0 \) and \(\delta(a_n) \to b \). Let \(a \) be a non-zero element in \(I \) such that \(\sigma(a) \neq 0 \). Hence \(aa_n \to 0 \) and by continuity of \(\sigma \) we have \(\delta(aa_n) \to \sigma(a)b \). Because of the closability of the restriction \(\delta |_I \) we have \(\sigma(a)b = 0 \). But \(I \) is an essential ideal of \(B \) so \(b = 0 \). \(\square \)

Theorem 2.18. Let \(M \) be a \(B \)-bimodule with an approximate identity \(\{e_i\} \), \(\sigma : A \to B \) be a surjective continuous linear mapping and let \(\delta : A \to M \) be a module \(\sigma \)-derivation. If for every ideal \((a) \) generated by \(a \in A \), the restriction \(\delta |_{(a)} : (a) \to M \) is closable, then \(\delta \) is closable.

Proof. Let \(x \in S(\delta) \). Then there exists a sequence \(\{a_n\} \) in \(A \) such that \(a_n \to 0 \) and \(\delta(a_n) \to x \). Let \(a \in A \). Since \(\sigma \) is surjective, there exists an element \(c \in A \) such that \(\sigma(c) = a \). Then \(ca_n \to 0 \) and by continuity of \(\sigma \) we have \(\delta(ca_n) \to \sigma(c)x = ax \). But \(ca_n \in (c) \) and by assumption the restriction of \(\delta \) on \((c) \) is closable, so \(ax = 0 \), for every \(a \in A \). The density of \(A \) in \(B \) implies that \(bx = 0 \), for every \(b \in B \). Since \(e_i \in B \), then \(e_ix = 0 \). But \(e_ix \to x \), hence \(x = 0 \). \(\square \)

The following results concentrate on the closability of module \(\sigma \)-derivations in Hilbert \(C^* \)-modules:

Let \(A \) be a dense subalgebra of a \(C^* \)-algebra \(B \), \(M \) a Hilbert \(B \)-module and let \(\{e_i\} \) be an approximate identity for \(B \). We have:

\[
< x - e_i x, x - e_i x > = < x, x > - e_i < x, x > + e_i < x, x > e_i - < x, x > e_i
\]

Hence \(< x - e_i x, x - e_i x > \to 0 \). Therefore \(e_ix \to x \). So by the Theorem 2.18 we have the next corollary.
Corollary 2.19. Let A be a dense subalgebra of a C^*--algebra B, M a Hilbert B--module, $\sigma : A \to B$ be a surjective continuous linear mapping and let $\delta : A \to M$ be a module σ--derivation. If for every ideal (a) generated by $a \in A$, the restriction $\delta |_{(a)} : (a) \to M$ is closable, then δ is closable.

Corollary 2.20. Let A be a dense subalgebra of a C^*--algebra B, $\sigma : A \to B$ be a surjective continuous linear mapping and let $\delta : A \to B$ be a module σ--derivation. If for every ideal (a) generated by $a \in A$, the restriction $\delta |_{(a)} : (a) \to B$ is closable, then δ is closable.

Before we state the next theorem, we need the following useful lemma which can be found in [12].

Lemma 2.21. Let M be a full Hilbert B--module and $b \in B$. If $bx = 0$, for every $x \in M$ then $b = 0$.

Theorem 2.22. Let A be a dense subalgebra of a C^*--algebra B, M be a full Hilbert B--bimodule and let $\delta : A \to M$ be a surjective continuous module σ--derivation. Then σ is closable.

Proof. Let $b \in S(\sigma)$. Then there exists a sequence $\{a_n\}$ in A such that $a_n \to 0$ and $\sigma(a_n) \to b$. Let $x \in M$. Since δ is surjective, so there exists an element $a \in A$ such that $\delta(a) = x$. Hence $a_n a \to 0$ and by continuity of δ we have $\delta(a_n a) = b\delta(a) = bx$. Using the continuity of δ once more, we have $bx = 0$, for all $x \in M$. But M is full and by the previous lemma, we have $b = 0$. \qed

Before we state the next theorem, we need the following useful lemma which can be found in [1].

Lemma 2.23. Let I be an ideal in a C^*--algebra B. The following conditions are mutually equivalent:

(i) I is an essential ideal in B;

(ii) $\|c\| = \sup_{b \in I, \|b\| \leq 1} \|bc\|, \forall c \in B$;

(iii) $\|c\| = \sup_{b \in I, \|b\| \leq 1} \|bc\|, \forall c \in B$;

(iv) $\|c\| = \sup_{b \in I, \|b\| \leq 1} \|bcb^*\|, \forall c \in B$.
Theorem 2.24. Let A be a dense subalgebra of a C^*- algebra B, I be an essential ideal of B which is contained in A, M be a Hilbert B- bimodule and let $\sigma : A \to B$ be a continuous linear mapping such that $\sigma(I) = I$. If $\delta : A \to M$ is a module σ- derivation such that the restriction $\delta \mid_I : I \to M$ is closable, then δ is closable.

Proof. Let $x \in S(\delta)$. Then there exists a sequence $\{a_n\}$ in A such that $a_n \to 0$ and $\delta(a_n) \to x$. It is enough to show that $\|x\| = 0$. For this, let b be a non-zero element in I satisfying $\|b\| \leq 1$. Since $\sigma(I) = I$, so there exists a non-zero element $a \in I$ such that $\sigma(a) = b$. Then $aa_n \to 0$ and by continuity of σ we have $\delta(aa_n) = \sigma(a)x = bx$. But $aa_n \in I$ and by assumption the restriction of δ on I is closable, so $bx = 0$. The fact that I is an essential ideal of B and the above lemma implies that

$$\|x\|^2 = \|< x, x >\| = \sup_{b \in I, \|b\| \leq 1} \|b < x, x > b^*\| = \sup_{b \in I, \|b\| \leq 1} \|< bx, bx >\| = 0. \Box$$

The following is an immediate consequence of Theorem 2.24.

Corollary 2.25. Let A be a dense subalgebra of a C^*- algebra B, I be a non-zero ideal of B which is contained in A, M be a Hilbert B- bimodule such that $\|x\| := \sup_{b \in I, \|b\| \leq 1} \|< bx, bx >\|$ holds for all of $x \in M$ and let $\sigma : A \to B$ be a continuous linear mapping such that $\sigma(I) = I$. If $\delta : A \to M$ is a module σ- derivation such that the restriction $\delta \mid_I : I \to M$ is closable, then δ is closable.

Acknowledgment: The authors would like to thank the referees for their valuable comments.

References

Maysam Mosadeq
Department of Mathematics
Faculty of Sciences
Assistant Professor of Mathematics
Mashhad Branch, Islamic Azad University
Mashhad, Iran
E-mail: mosadeq@mshdiau.ac.ir

Mahmoud Hassani
Department of Mathematics
Faculty of Sciences
Assistant Professor of Mathematics
Mashhad Branch, Islamic Azad University
Mashhad, Iran
E-mail: hassani@mshdiau.ac.ir

Assadollah Niknam
Department of Mathematics
Faculty of Mathematical Sciences and Center of Excellence in Analysis on Algebraic Structures (CEAAS)
Assistant Professor of Mathematics
Ferdowsi University
Mashhad, Iran
E-mail: dassamankin@yahoo.co.uk.