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Abstract. In this paper, for any two elements y, u of a BCK-algebra X,
we assign a subset of X, denoted by S, (u), and investigate some related
properties. We show that Sy (u) is a subalgebra of X for all y,u € X.
Using these subalgebras, we characterize the involutive BCK-algebras,
and give a necessary and sufficient condition for a bounded BCK-algebra
to be a commutative BCK-chain. Finally, we show that the set of all
subalgebras Sy (u) forms a bounded distributive lattice.
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1 Introduction

The notion of I-algebras was introduced as a generalization of set-the-
oretic difference and propositional calculi in [1]. In the same year, the
BCK-algebras as a generalization of I-algebras; and the BCl-algebras as
a generalization of BCK-algebras were introduced in [2]. These alge-
bras are two important classes of logical algebras. Commutative BCK-
algebras are an important class of BCK-algebras, which forms a class
of the lower semilattice [3, 9]. Other important types of BCK-algebras
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are implicative and positive implicative which introduced by K. Iseki
(1975). Tt is proved that a BCK-algebra is implicative and if and only
if it is commutative and positive implicative. The concept of an ideal in
a BCK-algebra was introduced in [5, 4]. One important type of ideals
is commutative, which has a close relationship with commutative BCK-
algebras, in the sense that a BCK-algebra X is commutative if and only
if every ideal of X is commutative [(].

It is well known that every initial set of a BCK-algebra is a subalge-
bra. But a subalgebra is not necessarily an initial set. In this paper, we
introduce and study a new kind of subalgebras different from the initial
sets. For this purpose, we assign a subset of X, denoted by Sy(u), for
any two elements y, u of a BCK-algebra X and investigate some related
properties. We show that S,(u) is a subalgebra of X for all y,u € X.
Also, in a commutative BCK-algebra, we give a necessary and sufficient
condition for Sy(u) to be an ideal. Moreover, we prove that a bounded
BCK-algebra X is a commutative BCK-chain if and only if every Sy (u)
is an initial set of X. We show that the set of all such subsets forms
a bounded distributive lattice. Finally, assuming L(y,X) denote the set
of all Sy(u) where u € X, we prove that S,(u) is the least element of
L(y,X) with property A(u) C S, (u).

2 Preliminaries

In this section, we review some definitions and known results, which will
be used in this paper. The reader is referred to [10, 7] for more details.

Definition 2.1. By a BCK-algebra we mean an algebra (X;*,0) of
type (2,0) satisfying the following azioms: for all x,y,z € X,

BCK-1: ((xxy)*(z*2))*(z*xy) =0,

BCK-2: (zx(xx*xy))*xy=0,

BCK-3: z*xxz =0,

BCK-4: zxy=0andyxx =0 imply x =y,

BCK-5: 0xz=0.

For brevity, we often write X instead of (X;x,0) for a BCK-algebra.
In any BCK-algebra X, one can define a partial order < by putting z <y
if and only if x xy = 0.
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In any BCK-algebra X, the followings hold:

(a1) z*0=ux,

(a2) z*xy<u,

(az) (wxy)xz=(z*2)*y,

(ag) = <yimpliescxz<yxzand zxy < zxzx,
(a5) (zx2)*(yx2) <z*xy,

(a6) @ (0% (z5y)) =4y,

(a7) z*(zxy) <y,

(ag) zxy<zeorzxz<y,

for any x,y,z € X.

A subset A of a BCK-algebra X is called:
(i) subalgebra of X if it is closed under *, multiplication of X, i.e.,
xxy € Aforall z,y € A;
(ii) ideal of X if it satisfies (i) 0 € A and (i7) z,y*xx € Aimply y € A
for all z,y € X.

A BCK-algebra X is called:
(i) chain if z <y ory <z for all z,y € X
(ii) bounded if it has the greatest element (denoted by 1). For any = € X,
we denote 1% x by Nuz;
(iii) commutative if it satisfies the condition: x x (x xy) = y * (y * x) for
all z € X. In this case, x x (x x y) (and y * (y x x)) is the greatest lower
bound of x and y with respect to BCK-order <, and we denote it by
T NY;
(iv) positive implicative if it satisfies the condition: (x*xy)*z = (x*z)
(y * 2);
(v) implicative if it satisfies the condition: z*(y*z) = x for all z,y € X.

Let X be a commutative BCK-algebra and A C X. Then the set
Ann(A) ={r e XjzrANa=0forallaec A}

is called the annihilator of A.

Note that in a bounded BCK-algebra the property NNx=x is not
true in general. An element x € X is called involution if it satisfies
NNx=x, and a bounded BCK-algebra X is called involutive if every
element z € X is involutive.



H. HARIZAVI

Theorem 2.2. [10] Let X be a BCK -algebra. Then

(1) X is commutative if and only if x x (x xy) < y* (y * x) for all
x,y € X;

(ii) X is positive implicative if and only if (x xy) *xy = x *xy for any
x,y € X;

(7i7) X is implicative if and only if it is commutative and positive
implicative.

A partial ordered set P is said to be lattice if for any two elements
x,y € P there exist the greatest lower bound of z,y (denoted by x A y)
and the least upper bound of z,y (denoted by x V y).

A BCK-algebra X is called a BCK-lattice if it with respect to its
BC K-ordering forms a lattice.

Theorem 2.3. [7] In any bounded commutative BCK -algebra X, the
followings hold: for all x,y € X,

(b1) NNz =z,

(be) Nx* Ny =y xz,

(bs) NoV Ny =N(zAy) and Nz N Ny = N(zVy).

Theorem 2.4. [7] Every bounded commutative BCK -algebra is a com-
mutative BC'K -lattice with x Ny = y* (y*x) and xVy = N(Nz A Ny).

Theorem 2.5. [10] Let X be a commutative BCK -lattice. Then the
following identities hold: for any x,y,z € X,

(1) zx(yV2) = (zxy) A(x*2),

(c2) 2% (yA2) = (wy) V(2 %2),

(c3) (xVy)xz=(zx2)V(yx*z).

3 On Class of Subalgebras of BC K-algebras

In this section, we introduce the special subsets of bounded BCK-algebras
and investigate some related properties.

Definition 3.1. For any two elements y,u of a bounded BC K -algebra
X, we denote

Sy(u) :=={z € X | (NNy) xu < yx*z}.
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By (a7), 0 € Sy(u) for any y,u € X.

The following proposition shows that Sy(u) is a generalization of the
annihilator.

Proposition 3.2. If X is a bounded commutative BCK-algebra, then
for ally € X, Sy(0) = Ann(y).

Proof. Observe that: z € Sy(0) © NNy <yxzx S y<ysx & y*xx =
yeyx(yxz) =0 zAy=0<x € Ann(y). O

Proposition 3.3. Let X be a bounded BCK -algebra. Then the follow-
ings hold, for any y,u € X

(i) 0 € Sy(u).

(it) If y < u, then Sy(u) = X.

(i49) If in addition X is involutive, then Sy(u) = X implies y < u.

Proof.(i) Let y,u € X. Then, using (a2) and (a7), we get NNy x u <
NNy <y =y=0. This implies 0 € Sy(u).

(ii) Let y < w. Then, by (a4), NNy < NNu. But NNu < u. Hence
NNy <wand so (NNy)*u =0 < yxx for any z € X. This implies
X C Sy(u) and so Sy(u) = X.

(iii) Let Sy(u) = X. Then 1 € Sy(u) and so (NNy) xu <y=*1=0.
Thus (NNy) *«u = 0 and so, since X is involutive, y *x u = 0, that is,
y < . O

The following example shows that the involutive condition in Propo-
sition 3.3(iii) is necessary.

Example 3.4. Let X = {0,a,b,1}. Define the operation * on X by the
following table:

SR O %
= St OO
Q@ O ol
QOO o
SO O Ol

Then X is a BCK-algebra, but it is not involutive because NNb =
1% (1%b) =a. Since NNbxa = 0, it follows that Sy(a) = X, but b £ a.
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Proposition 3.5. Let X be a bounded BCK -algebra. Then the follow-
ings hold, for any y,u,v € X

(1) if u < v, then Sy(u) C Sy(v).

(i) if in addition X is commutative and u,v <y, then Sy(u) C Sy(v)
implies u < v.

Proof. (i) Let u < v. Then (NNy)*v < (NNy)*u. Now, assume that
z € Sy(u). Then (NNy) *u < y*z and so (NNy) *v < y * x. Hence
x € Sy(v).

(ii) Let Sy(u) C Sy(v). Then it follows from u € Sy (u) that u € Sy(v)
and so NNyx*xv < yxu. But, since X is commutative, we have NNy = y.
Thus y v < y*u and so by (a4), we get y * (y *u) < y* (y*v). Thus,
using the commutatively of X, we obtain y A u < y A v and so from
u,v <y, we conclude u < v. [l

The commutative property in Proposition 3.5 is necessary as shown
in the following example.

Example 3.6. Let X = {0,a,b,c,1}. Define the operation * on X by
the following table:

_= 0 o Q O %
0 o OO
_ 0 oo ol
— 0O O Q oS
_ o O O OoOl0
OO OO O

Then (X;%,0) is a BCK-algebra, but it is not commutative because
1x(1lxa) =0 # a =ax(ax1). By simple calculation, we have
Se(b) ={0,a,b} C X = S¢(a) but b £ a.

The relationship between S, (u) and the initial set A(u) is introduced
in the following.

Proposition 3.7. Let X be a bounded BCK-algebra and y,u € X. Then
the followings hold:

(i) A(u) C Sy(u), in which A(u) ={z € X |z < u}.

(i1) Sy(u) = A(z) if and only if z is the mazimum of Sy(u).
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Proof. (i) Let x € A(u). Then z < w and so (NNy)xu < (NNy)xz <
y * x. Therefore x € Sy (u).

(ii) If Sy(u) = A(z), then clearly the result holds.

Conversely, assume that z € Sy(u) is the maximum of Sy(u). Then
for all x € Sy(u), < z . From this follows that S, (u) C A(z). Now, let
x € A(z). Then z < z and so y * z < y *x . On the other hand, from
z € Sy(u), we have (NNy) * u < y* z. Thus (NNy) *xu < y % 2 which
yields € Sy(u). Therefore A(z) C Sy(u) and so Sy(u) = A(z). O

Note that Sy,(u) is not necessary to be contained in A(u). Consider
Example 3.6, routine calculations show that S.(a) = X Z {0,a} = A(a).

Theorem 3.8. Let X be a bounded BCK-algebra. Then Sy(u) is a
subalgebra of X for any y,u € X.

Proof. Obviously, 0 € Sy(u). Let z,z € Sy(u). Then by (a4), it follows
from z * z < x that

(NNy)xu < (NNy)*xz < (NNy)x (x*x2) < yx*(x*2).

This implies that « * z € Sy(u). Therefore Sy(u) is a subalgebra of X.
g

Proposition 3.9. Let X be a bounded BCK-algebra. Then the follow-
ings hold: for all y,u,v € X,

(i) Sy(u+ (s 0)) C Sy (u) 18, ().

(1) If in addition X is commutative, then Sy(u A v) = Sy(u) NSy (v).

Proof. (i) The proof is straightforward by using (a;y) and Proposition
3.5(1).

(ii) Since X is commutative, u Av = u* (u*v). Then by (i), we only
need to prove that Sy(u) N Sy(v) C Sy(uAwv). Let z € Sy(u) N Sy(v).
From = € Sy(u), we get (NNy) *u < y . We note that, since X is
commutative, we have NNy = y. Thus y*u < y*z and so y* (yxz) <
y* (y xu), that is, x Ay < uAy. Similarly, from = € Sy,(v), we have
x ANy < vAy. Therefore x Ay < (uAy) A(vAy) =yA(uAv),
that is, y * (y * ) < y * (y * (u A v)). Thus, using (a4), we conclude
yx(yx(y*(uAv))) < yx(y*(y*x)) and so, by (ag), we get yx(uAv) < y*x.
From this follows that NNy* (uAv) < y+x and so x € Sy(uAv). Hence
Sy(u) N Sy(v) € Sy(u Av) and so the proof is completed. [
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Proposition 3.10. Let X be a bounded commutative BCK-algebra and
u,v € X. Then the following hold:

(1) Sy(u) = Sy(v) if and only if y*xu =1y *v.

(i1) If u,v <y, then Sy(u) = Sy(v) & u=wv.

Proof. (i) Let Sy(u) = Sy(v). Since u € Sy(u), we get u € Sy(v) and so
(NNy)*v < y*u. Thus by the commutatively of X, we get y*v < y*u.
Similarly, from v € S, (v) we obtain y *u < y* v, therefore y*xu =y *v.

Conversely, assume that y * u = y * v. Then by the commutatively
of X, x € Sy(u) if and only if y xu < y*z if and only if yxv <y x if
and only if x € Sy(v). Therefore Sy (u) = Sy (v).

(ii) Let Sy(u) = Sy(v). From (i), we have y * u = y * v and so
y* (y*u) = yx*(y*v). Hence by the commutatively of X, uAy =v Ay,
and so from u,v <y, we conclude u = v.

Conversely, it is obvious. O

Using Propositions 3.5 and 3.10(ii), we have the following result:

Corollary 3.11. Let X be a bounded commutative BCK-algebra and
y € X. Then for any u,v € A(y),

Sy(u) = Sy(v) & u=w.

The following example shows that the commutative property of X
in Corollary 3.11 is necessary.

Example 3.12. Let X = {0,a,b,c}. Define the operation * on X by
the following table:

*‘Oab c
0j0 0 0 O
ala 0 a 0
b|b b 0 0
clc ¢ ¢ O

Then (X;%,0) is a BC K-algebra, but it is not commutative because
c*(cxa) =0# a=ax(ax*c). Routine calculations show that S.(a) =
Sc(b) = {0,a,b}, which does not imply a = b.

Next, we characterize the involutive BC K-algebras.
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Proposition 3.13. Let X be a bounded BCK-algebra. Then the follow-
g are equivalent:

(1) X is involutive.

(1) (Vu,v € X) S1(u) = Si(v) implies u = v.

Proof. (i)= (ii) Let w,v € X be such that Sij(u) = Si(v). From
u € Si(u), we get u € S1(v) and so NN1*v < Nu, that is, Nv < Nu.
Thus using (a4), we have NNu < N Nv and so by (i), we conclude u < v.
Similarly, we can show that v < u. Therefore u = v.

(ii) Let u be an arbitrary element of X and assume that x € Sy (u).
Then NN1 xu < Nz, and so, since NN1 = 1, we get Nu < Nu.
Hence by (ag), N(NNu) < Nz, that is x € S1(INNu), hence S;(u) C
S1(NNu). The reverse inclusion follows from N Nu < u and Proposition
3.5(i). Thus Si(u) = S1(NNwu) and so by (ii), NNu = u. Therefore X

is involutive. O

The following theorem provides a property for a bounded BCK-
algebra to be a commutative chain.

Theorem 3.14. Let X be a bounded BCK-algebra. Then the following
are equivalent:

(1) X is a commutative BCK-chain.

(17) Sy(u) = A(u) for any y,u € X with y £ u.

Proof. (i)= (ii)) Let y,u € X be such that y £ v and let z € Sy (u).
Since X is a BCK-chain, y < z or z < y. If y < z, then from z € Sy (u)
we get (NNy) xu < y* z =0 and so, by the commutatively of X, we
obtain y*u = 0, that is, y < u, which is a contradiction with assumption
y £ u. Thus z < y. We assert that z < u. If not, then u < z. Thus by
(a4), we obtain (NNy)*z < (NNy) *u and so by the commutatively of
X, we have

y*xz < yxu. (1)

On the other hand, by the commutatively of X, from z € Sy(u), we get
yxu <yx*z. (2)

From (1) and (2), we get y* 2z = y*xu. Thus y* (y*2) = y* (y*xu) and
so, we conclude
yAz=1yAu. (3)
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Now, from y £ u, we get u < y, which implies yAu = u. Also, from z <y
, we have y A z = z. Thus, by (3), we get z = u, which is a contradiction
with assumption u < z. Hence z < u and so z € A(u). We have shown
that Sy(u) C A(u). But by Proposition 3.7(i), A(u) € Sy(u). Therefore
Sy(u) = A(u).

(ii)=-(i) Assume that z,y € X. Obviously, y < y* (y*xz) or y £
yx(yxx). If y <yx*(yxx), then by (az), we get yx (y * x) = y and
soy*(y*(y*x)) =yxy=0. But, by (ag), y * (y* (y*x)) = y *z.
Hence y * = 0, that is, y < z. If y € y * (y * =), then by (ii),
Sy(y*(y*z)) = A(y* (y*x)). Using (as), (as) and axiom (BCK-1), we
get

(NNy)*(y*(y*x)) = N(y*(y*2))* Ny <y*(y*(y*z)) = y*x. (4)

This implies that @ € Sy(y * (y * 2)) and so by (ii), = € A(y * (y * x)),
that is, z < y * (y * ). On the other hand, y * (y * ) < y. Thus
x < y. Up to now, we have shown that X is a BC K-chain. To prove the
commutatively of X, assume that z,y € X. Since X is a BC K-chain,
without loss the generality, we may assume that x  (z*xy) < y* (y *x).
We assert that y * (y * ) < x * (x x y). If not, then

y* (yxx) Lax(zxy). ()

Since y* (y*x) < x, it follows from (5) that z € z*(z+*y). Hence by (ii),
we have S;(x * (z xy)) = A(z * (x*y)). Similar to the argument of (4),
we have y € Sy(x*(r*y)). Thusy € A(x*(z*xy)) and so y < x* (z*y)
On the other hand, y x (y * ) < y. Hence y * (y x x) < x * (x *x y)
which is a contradiction with (5). Thus y * (y xz) < z % (z *y) and so
yx (y*xx) =z * (r+y). Therefore X is commutative and the proof is
completed. O

I

Let X be a commutative BCK-lattice. For any element y € X, we
denote L(y, X) := {Sy(u) | v € X} and define operations 57 and A on
L(y, X) as follows: for any u,v € X,

Sy(u) v Sy(v) == Sy(unv) ;5 Sy(u) A Sy(v) :=Sy(u Vo). (6)

Theorem 3.15. Let X be a commutative BCK-lattice and let opera-

tions <7 and A\ are defined as (6). Then (L(y, X);~/,2\) is a bounded
distributive lattice.
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Proof. Let Sy(u),Sy(v) € L(y, X). Obv10usly, by Proposition 3.9(ii),
Sy(u A s) is the infimum of Sy(u) and Sy,(v). Since u,v < u V v, from
Proposition 3.5(i), we get S (u),Sy(v) Sy(u Vv). Now let Sy(z) €
L(y, X) be such that Sy, (u),S,(v) € Sy(z). Then from u € Sy(u), we
have u € S,(z) and so (NNy) % z < yxwu. Similarly, (NNy) xz <y xwv.
Hence (NNy)xz < (y+u) A(y*v), and so, using Theorem 2.5(cy ), we get
(NNy)*xz < y*(uVv). This implies uVv € Sy(z). Then by Proposition
3.7(1), Sy(u Vv s) C Sy(z). Hence Sy(u V v) is the supremum of Sy(u)
and Sy (v). Therefore (L(y, X);v7,A) is a lattice. By Proposition 3.5,
Sy(0) and Sy (1) = X are the least element and greatest upper of L(y, X)
respectively, and consequently X is bounded. It remains to prove that
L(y, X) is distributive. For this, by (6) and the distributivity of X, it is
easily seen that

Sy(2) v ((Sy(u) & Sy(v)) = Sy(z
Sy((z Au) V(2 Av))
y(z Au) AN Sy(z Av)

=( y(Z) Sy(u)) & (Sy(2) 7 Sy(v)),

for any y, z,u,v € X. Therefore (L(y, X);</, /) is a bounded distribu-
tive lattice. (I

The subset S, (u) is not necessary to be an ideal even if X be a
commutative BCK-chain as shown in the following example.

Example 3.16. Let X = {0,a,1}. Define the operation * on X by the
following table:

Then (X;*,0) is a commutative BC'K-chain. Routine calculations show
that S1(a) = {0, a} which is not an ideal of X because 1 xa = a € S;(a)
but 1 & Si(a).

Next, we give a property for Sy(u) to be an ideal.

11
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Proposition 3.17. Let X be a commutative BCK-chain. Then the
following are equivalent:

(1) X is implicative.

(i1) For any y,u € X, Sy(u) is an ideal of X.

Proof. (i)=(ii) Let y,u € X. If y < u, then by Proposition 3.3(ii),
Sy(u) = X and so clearly Sy(u) is an ideal of X. Now, assume that
y £ u. Then by Theorem 3.14, S, (u) = A(u). Hence it suffices to show
that A(u) is an ideal of X. Assume that z,y * 2 € A(u). Then z < u
and y*xz < wand so xxu =0 and (y*z)*u = 0. By Theorem 2.2(iii),
X is a positive implicative and so, we get (y*u)*u = y*u. Using (as)
and (as3), we have

yrxu=(y*xu)x0=(yxu)*(x*xu)=((y*xu)*u)*(zr*u)
<(yxu)sxx=(y*xz)*u=0.
Thus y * u = 0, that is, y € A(u). Therefore A(u) is an ideal of X.
(ii)=-(i) By Theorem 2.2(7i7), it suffices to show that X is a positive
implicative BC K-algebra. Let z,y € X. Then by (ii), A(z) is an ideal

of X. Taking, z :=y* (y*z) <z and w := y* ((y *x x) * x), it follows
from y * (y * ) < = that z € A(z). Also, we have

wkz = (y* ((y*x)*x))* (y* (y* 1))

<(y*xx)x((y*xx)*x) by axiom (BCK-1)
<yx(yxx) by (as)
<z € A(x). by (a7)

Hence w x z € A(z) and so from z € A(z) and the fact that A(x) is an
ideal of X, we conclude w € A(x), that is, y* ((y xz) xx) € A(z). Thus
y* ((yxz)*x) <z and so by (ag), y*x < (y *x) * z. On the other
hand, (y*z)*x < yxx. Therefore (y*z)*x = yxx, and so by Theorem
2.2(i1), X is a positive implicative BC' K-algebra. O

Proposition 3.18. Let X be an involutive BCK -algebra. Then, Sy(u)
is the least element of L(y, X') with property A(u) C Sy,(u) for any y,u €
X.

Proof. By Proposition 3.7(i), the property A(u)

C Sy(u) holds. Now,
assume that A(u) C Sy(v) for some v € X. If z € Sy(u

), then (NNy) *
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u < y*x and so by the involutivity of X, y*u < y*x. Thus, using (ag),
we get y* (y*x) < u, that is, y* (y*x) € A(u). Hence y*(y*x) € Sy(v)
which yields y v < y* (y * (y * z)). Then by (ag), we get yxv < yxx
and consequently, x € Sy(v). Therefore S,(u) C Sy(v) and so the proof
is completed. O

The converse of Proposition 3.18 is false as shown in the following
example.

Example 3.19. Let X = {0,a,1}. Define the operation * on X by the
following table:

Then (X;*,0) is a BCK-chain. Routine calculations show that

Sy(u) =X forallue X and y=0,q;
A(l) = Sl(l) =X g {O,CL} = 51(0) = Sl(a)

Therefore X satisfies Proposition 3.18 but it is not involutive because
0= NNa # a.

In the following, we show that Sy(u) inherits all properties of a com-
mutative BCK-lattice.

Proposition 3.20. If X is a commutative BCK-lattice, then so is Sy(u)
for ally,u e X.

Proof. By Theorem 3.8, Sy (u) is a subalgebra and so it is a commutative
BCK-algebra. Let z,z € Sy(u). Then (NNy) *u < y*z. On the other
hand, it follows from = A z < x that y xz < y % (x A z). Therefore
(NNy) xu < y * (z A z), which yields z A z € Sy(u). Hence Sy(u) is
closed under A. Also, using (ag), since y*xu < y*x, we get y* (y*xz) < u
and so x Ay < u. Similarly, from y * u < y * z, we conclude z Ay < u.
Thus (z Ay) V (2 Ay) < u and so by the distributivity of X, we obtain
(xVz) ANy <wu,that is, y x (y * (z V z)) < u. Hence, using (ag), we get
yxu < yx(xVz) and so by NNy < y, we get (NNy)*u < y(zVz) which

13
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yields xVz € Sy(u). Therefore Sy(u) is closed under V. Summarizing the
previous results, we conclude that Sy(u) is a commutative BC K-lattice.
O

Conclusion and future work

It is well known that every initial set of a BCK-algebra is a subalgebra.
But a subalgebra is not necessarily an initial set. In this paper, we have
introduced and studied a new kind of subalgebras different from the ini-
tial sets. For this purpose, we have assigned a subset of X, denoted by
Sy(u), for any two elements y,u of a BCK-algebra X and have investi-
gated some related properties. We have shown that Sy(u) is a subalgebra
of X for all y,u € X. Moreover, we have proved that a bounded BCK-
algebra X is a commutative BCK-chain if and only if every S, (u) is an
initial set of X. Finally, assuming L(y,X) denote the set of all Sy (u)
where u € X, we have proved that S, (u) is the least element of L(y,X)
with property A(u) C Sy (u).

Our future work is to introduce and study this kind of subalgebras in
logical algebraic structures such as (pseudo)BCH-algebras, (pseudo)BE-
algebras, (pseudo)Cl-algebras and etc.
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