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Abstract. For any positive integer m, ¢(m) finds out how many
residues of m that are co-prime to m, where ¢ is the Euler’s totient
function. In this paper, we introduce the notion of totient and hyper
totient numbers. We explore the potential links of totient, super totient
and hyper totient numbers. Many postulates and characterizations of
these numbers have been proposed with straight forward proofs. In the
end, applications of these numbers in graph labeling have also been
demonstrated over a family of well known graph.
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1. Introduction

A number is called perfect if the sum of its positive divisors is twice of the
number. That is, o(n) = 2n, where o(n) denotes the sum of positive di-
visors on n [2]. A generalization of the concept of perfect number, called
Zumkeller number, has been investigated and published by Zumkeller in
2003. Zumkeller generated a sequence of integers in which the positive
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divisors of every integer can be partitioned into two disjoint sets whose
sums are equal [15]. The notion of Zumkeller numbers was formally in-
vestigated by Clark et al. [12]. Later on, Peng and Bhaskara Rao proved
several results about Zumkeller numbers and half Zumkeller numbers in
[14]. In [1], Balamurugan and et al., presented algorithms for Zumbkeller
labeling of bipartite and wheel graphs. In [6], Hoque generalized the
concept of perfect numbers using arithmetic functions. McDaniel proved
some results on non-existence of odd perfect numbers [8]. In this piece
of work, we introduce and investigate new classes of numbers namely
totient numbers and hyper totient numbers using Euler Totient func-
tion ¢ and demonstrate their applications in graph labeling over Wheel
graphs. We organize our paper as follows.

First, we state some previous results without proofs and few important
definitions from [2, 13] to make this paper self readable. In Section 2,
we discuss super totient numbers and characterize these numbers com-
pletely. In Section 3, we introduce the notion of hyper totient numbers
and prove that a Zumkeller number is either a super totient or a hy-
per totient number. In Section 4, we validate these numbers in graph
labeling over Wheel graphs.

Theorem 1.1. [2] “For n > 1, the sum of positive integers less than n
; ; .np(n) »

and relatively prime to n is —%5—.

Definition 1.2. [5] “A perfect number is of Euclid type if it can be

written in the form 28=1(2%F — 1), k> 1.”

Definition 1.3. [9] “A number n is said to be k-perfect if o(n) = kn.”

Definition 1.4. [3, 10] “An integer n > 0 is near 3-perfect if o(n) =
3n+d, where o(n) is the divisor function and d is a proper divisor of n.
Every 3-perfect number will be of the form 2%pips, where p1 < py are
distinct odd primes provided a > 1, 1 <t < 2.”

Proposition 1.5. [14] “If n is a Zumkeller number, then

(a) o(n) is even.

(b) The prime factorization of n must include at least one odd prime to
an odd power.”
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Definition 1.6. An integer n > 0 is called totient, if the sum of co-prime
residues of n is 25n, k> 1. That is,

Yo d=2nk>1.
d<n,(d,n)=1

The numbers 5,8,10,12,15,16,17,20,24, ... are the examples of some
totient numbers. In the following proposition, we characterize the totient
numbers to view their postulates as simple consequences.

Proposition 1.7. An integer n > 0 is totient if and only if p(n) =
2kt > 1.

Proof. By Theorem 1.1, n is totient number

& p(n) = n<,02(n) =2kn, k>1

s pn)=2k>1. O

Consequences
1. Let n; fori = 1,2, 3, ..., be pairwise relatively prime totient numbers.
T

Then [] n; is a totient number.
i=1
2. If 28 and 2F*! are totient numbers, then so is their sum.

3. An odd integer n is a totient number if and only if 2n is a totient
number.

A prime number of the form 22" + 1,n > 1 is called a Fermat prime
[11]. Sine it is well-known that p is prime if and only if ¢(p) = p — 1.
Thus in case of Fermat’s prime, we must get ¢(p) = ¢(2%" + 1) = 22",
where 2" > 1. Thus, in the light of Proposition 1.7, it is clear that all
Fermat’s primes are totient numbers. This gives the following theorem.

Theorem 1.8. Every Fermat’s prime is a totient number.
By Proposition 1.7 and Theorem 1.8, we characterize totient number by

prime factorization.

Theorem 1.9. A positive integer n is totient number if and only if n =
25 D1 - pm, n# 2, n# 22 n# 2.3, where each p;, 1 <i<m, k>1,
are Fermat’s prime numbers.
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From Proposition 1.7 and Consequence 1, we conclude the following
result.

Theorem 1.10. The set of totient numbers is infinite.

2. Super Totient Numbers

Recall that a positive integer n is super totient if the co-prime residues of
n can be separated into disjoint sets whose sums are equal (for detail, see
Definition 1.3, [7]). For example if we take n = 5, then the set of residues
of 5 can be partitioned as, A = {1,4} and B = {2, 3}. Then by Definition
1.3 of [7], the integer 5 is a super totient number. Similarly, 8, 10, 12,
13, 14, 15, 16, 17, 20, - - -, are all super totient numbers. In this section,
we completely characterize all super totient numbers. We further show
that the class of super totient numbers is a bigger class then to class of
totient numbers. For the characterization of super totient numbers, the
subsequent lemma of [7] is of essential importance.

Lemma 2.1. [7]. Let n > 0 be an integer, if ¢(n) =0 (mod 4) then n
18 super totient.

Theorem 2.2. A prime number p is super totient if and only if p = 1+4t
for some t € ZT.

Proof. Let be p a super totient prime number. Then by definition,
1,2,3,...,p— 1 can be divided into two disjoint sets of equal sums. This
sum certainly is an integer, so by Theorem 1.1, 4|p ¢(p). But p is prime,
so ¢(p) = 0(mod 4) if and only if p =1 + 4t for some t € Z+ O

Corollary 2.3. If a prime number p is super totient number then p*, k >
1 45 super totient.

Proof. Let p be a super totient prime. Then by Theorem 2.2, p =
1(mod 4). That is, p — 1 = 4t for some integer ¢t. Note that,

e(*) =p" Hp—1) = pF(4t) = 4tp"! = 0(mod 4).

Thus by Lemma 2.1, p* is a super totient. O
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Observe that, if n is a totient number, then by Proposition 1.7, ¢(n) =
2k+1 I > 1. Hence by Lemma 2.1, n must be super totient. However,
the converse is not true in general, since 14 is a super totient number
but ¢(14) = 6 cannot be written as a power of 2. Hence, it is not a
totient number. The above discussion leads to the following theorem.

Theorem 2.4. Fvery totient number is super totient. The converse is
not asserted and in fact, is not true in general.

The proof of the following theorem can be obtained by means of Lemma 2.1.

Theorem 2.5.
1. Let n; fori =1,2,3,...,r be pairwise relatively prime super totient

numbers. Then H n; 1S a super totient number.

2. Ifm >0 has at least two odd prime factors then m is a super totient
number.
3. If m > 0 and n is super totient number then mn is a super totient
number.
4. If n is super totient number, then n? is also super totient.

5. If p|n, where p = 1 + 4t is an odd prime number, for some t € Z*
then n is super totient number.

From Lemma 2.1 and Theorem 2.5(1), we conclude the following result.
Theorem 2.6. The set of super totient numbers is infinite.

Theorem 2.7. If the positive integer n € N is super totient, then nyp(n)
is a multiple of 4. Converse is true for n > 30, exactly if n > 30 and
np(n) is a multiple of 4, then n is super totient.

Proof. If n is super totient, then {r1,--- , 7, } = AU B, where A and

B are disjoint sets and Y, a = ). b. Letting s denote the common
acA beB
value of the above sum, we have by Theorem 1.1,

2s = Za+2b:ngp(n)/2,

a€A beB

so s = ne(n)/4. Thus, 4|np(n). This proves the necessary condition.
For the sufficiency, assume 4|np(n). If 4|¢(n), then n is super totient by
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Lemma 2.1. So assume that 4 t ¢(n). Since n > 30, ¢(n) is even, it follows
that 2 || ¢(n) (we write a || b, if a divides b but no higher powers of a
divide b). Since 4|nep(n) and 2 || ¢(n), it follows that 2|n. In particular,
n = 2p* for some positive integer k and prime p with p = 3(mod 4) ( for
if p = 1(mod 4), then 4|p — 1 = ¢(p), a contradiction against the fact
that 2 || ¢(n)).

Consider the following numbers

T1,72, 7r4p(n)/27

which are all the numbers smaller than n/2 and coprime to n. Let s =
©(n)/2. If p > 3, the string of these numbers contains 1,3, -+ ,n/2 — 4,
which are all smaller than n/2, coprime to n, and distinct since n/2—4 >
3, which is equivalent to n > 14. There are s — 3 numbers left. Select ¢
of them say
Tty Tit

where t = (p(n) — 2)/4. The number ¢ is a positive integer since p(n) =
2(mod 4) and it is possible to choose t numbers out of s — 3 because
s — 3 > t, an inequality equivalent to

p(n)/2 =32 (p(n) —2)/4,

which is equivalent to ¢(n) > 10. To see that this is satisfied for n > 30,
recall that n = 2p¥. We want to show that p*~1(p—1) > 10.If k = 1, then
since n > 30, we get that p > 15, so the above inequality is satisfied. If
k > 2, then either p = 3, in which case k > 3 and so p*'(p — 1) >
9.2 > 10, or p > 7, in which case p*~!(p —1) > 7-6 > 10. So, the
inequality ¢(n) > 10 is indeed satisfied for n > 30 of the form n = 2p*
with p = 3(mod 4).

Consider now
A:{17 3) n/2_47 Ti1, 0y Tity, M —Tq1, ", n_rit}'

Then A has 3+ 2t elements, the first ¢+ 3 < s being distinct and smaller
than n/2 and the last ¢ being distinct and larger than n/2. The sum of
elements of A is
t
(143+n/2-4)+ ) (rijtn—ry) = n/2+tn = n/2(1+2t) = np(n) /4 = s.
j=1
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Thus, the complement B of A has sum np(n)/2 —s =np(n)/4 = s.

In case p = 3, replace the beginning elements 1,3,n/2—4 by 1,7,n/2—8
which are also coprime to n = 2 - 3*. We need n/2 — 8 > 7, so n > 30,
which is satisfied for n > 30 of the form 2 - 3*. Everything else stays the
same(namely the choice of ¢, etc.) O

It is important to note that every even numbers n must be any one of the
two types namely p(n) = 0(mod 4) or p(n) = 2(mod 4). The numbers
lying in first class have been determined as super totient numbers by
means of Lemma 2.1. However, the determination of all super totient
numbers from the second type is difficult and challenging. Since there
are many numbers from second class which do not follow the definition
of super totient numbers. For example, ¢(18) = 2(mod 4), but 18 is
not super totient, whereas 14 is a super totient number and ¢(14) =
2(mod 4) as well. After proving the following result, we characterize the
supper totient numbers completely. Thus the following theorem is of
vital importance.

Theorem 2.8. An even integer not divisible by 4 of kind p(n) = 2(mod 4)
is super totient if and only if there exists residue 1 < r; < (n+2)/2, i =
1, 2,3, -, o(%2), such that (%52,r;) =1 and ("2 —r;, n) = 1.

Proof. Let n be an even integer not divisible by 4 satisfying the con-
gruence ¢(n) = 2(mod 4). Suppose there exists a residue r;,1 < r; <
(n+2)/2, where i = 1, 2, 3, -+, o(%f2), such that (%£2,r;) =1 =
(%52 —r;, n). Without any loss, we take i = 2, and get, (”Jr2 ro) =1=
(%2 —ry, n). Let k = (¢(n) —2)/4 > 0 be any integer. If k = 1 then
(p(n) —2)/4 = 1 yields that ¢(n) = 6. Thus in this case there are the

six residues of n which can be rearranged after renaming as:

ri=1ro=ry, (n+2)/2—r9 =13, n—r3 =14, n—r9 =15, n—1 =7%.

These can be partitioned as under:

A= {re, 12, T3}, B= {ry, rs ra}.
Then it is clear that,
Sa=n—-14+22 =2 =14n—ro+n— (22 —-r) =Y b

acA beB
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That is, the case k = 1 is true. Let kK > 1 and after renaming, we
fix six residues as, 1 = 1, 19 = 1o, (R +2)/2 -1y = 1r3, n—1r3 =
ry, n—1re =15, n — 1 =rg. The rest of the residues can be rearranged

as, rp < rg < rg < --- < rgp+1 < Tr4pt2. Then after, we can partition
these co-prime residues of n in the following two disjoint sets:
A - {Tﬁv T2, T3}U{T77 rg, -, Tk+5}U{n—T‘7, n—rg, -+, n_rk+5}a
B= { T, Ts, 7’4} U {Tk‘+67 e 7r2k’+4} U {TL —Tk+6," " , 10— T2k+4}'
This gives,
k+5
i+ n—r;)
acA
2 2k +1
n+ (k—1)n = w
2
n 4+ 2
=l4n—ro+n—( —ry)+ (k—1)n
2k+4
=1l4+n—ro+n—rz+ Z (rj—|—n—rj):Zb.
j=k+6 beB

Hence by definition, n is super totient.

Conversely, suppose n is a super totient number of the type p(n) =
2(mod 4). Then by Theorem 1.1, the sum of co-prime residue of n is
n(2k + 1). But then the sum of residues appearing in both the disjoint

partitioned sets is w
That is,
2k +1)
W = Y
acA
k—1
= Z(ri—l—n—ri)—kn—l—&—s where s:er for some j.
i=1 j
= nk-1)4+n—-1+s=nk—1+s. (1)
Equation (1), is balanced only if s = 2}2. Since 4 { n, so 22 must
be an integer so, s = ”TJFQ is even integer On contrary we suppose

that there does not exist any residue r;, co-prime to n provided 1 <
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r < (n+2)/2, i=1,2 3, -, @(”TH), satisfying the condition
(”TH,TZ-) =1 and (’%2 — 14, n) = 1. Then, of course, it is impossible to
find their sum as the number s. This further implies that n is not super

totient, a contradiction. This completes the proof. [J

It is well-known that every even perfect number is of Euclid type. That
is, it can be expressed in the form 2*='(2¥ — 1), k > 1. Let n be an
even perfect number greater then 6. Then it can be written as 2+F~1(2¥F —
1), k > 1. For k = 2, n = 6, which is not super totient number. Let
k > 2 then we obtain, p(n) = (2F1(2F —1)) = p(2F1)p(2F — 1) = 4k,
for some positive integer k. Hence, n is a super totient number. This
leads to the following result.

Theorem 2.9. Fvery even perfect number greater then 6 is super totient.

Also, in view of Definition 1.3 and 1.4, following results are easy to prove.

Theorem 2.10.
(1) Every 3-perfect and 4-perfect numbers are super totient.(2) Every
near 3-perfect is super totient.

3. Hyper Totient Numbers

An integer n > 0 is termed as hyper totient, if the co-prime residues of n
including n, can be divided into two separated sets of equal sum. In this
section, we state and prove results regarding hyper totient numbers and
show that the any Zumkeller number is either a super totient number or
hyper totient number. For example the numbers 6 and 7 are not super
totient since their respective set of relatively prime residues are {1,5}
and {1,2,3,4,5,6}. Both can never be divided into disjoint sets of equal
sum. However, if we add 6 and 7 to above sets then the desired partitions
are possible. These are: {1,5}; {6} and {1,6,7} ;{2,3,4,5}.

The following theorems give few postulates and enumerate the complete
set of hyper totient numbers.

Theorem 3.1. A positive integer n is hyper totient if 4|(p(n)+2). How-
ever, the converse is not asserted and, in fact, is false in general.

Proof. We note that, (r;,n) = 1 if and only if (n — r;,n) = 1. Let
k= (p(n)+2)/4. If k =1, then 1 = (p(n) + 2)/4 gives that ¢(n) = 2.
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This means that 1 and n — 1 are the only co-prime residues of n, in this
case, we find the desired partition as, A = {1, n—1} and B = {n}. This
clearly shows that n is hyper totient. Next we let k > 1. A partition of the
set of co-prime residues of n namely 1 =11 <ry <713 <+ <rgp) <n
and including n, is given as,

A:{?”l, T2, T3-..7Tk}U{n—T1,’I’L—TQ’n—/r'?)...,n_,,ak}’
B = {Tk+17 Tk42, " TQk—l}U{n_Tk+1, N—Tky2, ", n_TQk_l}U{TL}.
Then it is clear that,
k 2k—1
oed =l j=k+1 beB

Conversely, if we take n = 8 then it is hyper totient since its set o(f )co—

. . .. . ©(8)+2
prime residues can be partitioned as {1, 3,8} and {5,7}. While, ==~
is not integer. U

The following results can be proved using Theorem 3.1.

Corollary 3.2. A prime number p is hyper totient if and only if p =
3+ 4t for somet € ZT.

Proof. Let p be any hyper totient prime number. Then by definition,
the numbers 1,2,3,...,p — 1 and p can be divided into two disjoint sets
of equal sum. This sum certainly is an integer, so by Theorem 1.1,
4p(p(p) + 2). But p is prime, thus 4|o(p) + 2. Note that ¢(p) + 2 =
0(mod 4) if and only if p = 3 + 4t for some ¢t € ZT. Consequently,
any prime number p is hyper totient if and only if p = 3 + 4¢ for some
tezt. O

Corollary 3.3. If a prime p is a hyper totient then p*.k > 1 is also
hyper totient.

The proof is similar to Corollary 2.3.
Theorem 3.4. Every integer divisible by 4 is hyper totient.

Proof. Let n be any integer divisible by 4. In view of Theorem 3.1, all
integers of the type p(n) = 2(mod 4) divisible 4 are hyper totient. Now
we discuss the other case. That is, all integers of kind ¢(n) = 0(mod 4)
and divisible by 4. So we, let & = ¢(n)/4. It is easy to verify that

n

(n, 3 —1)=1and (n, §+1) = 1. If k = 1, there are four co-prime
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residues of n. These can be rearranged as, r1 =1, ro = § — 1, r3 =
§+1, 74 =n—1 Then, A= {ry, r2, n} and B = { r3, r4}, is the
desired partition. Hence n is hyper totient as,

Sa=1+2-1+n=2=24+1+n-1= 3 b
ac€A beB

Let k£ > 1. We fix the above four co-prime residues of n and the remaining

co-prime residues are given as, 15 < 17 < 77 < --- < 1. Then we can
find the desired partition as,
A={ry, r2, n}U{rs, 16, -+, Tky3fU{n—rs, n—re, -+, n—rry3},
B ={rs,ra} U{rgsa, -+ roppat U{n —ripa, - n — ropial
But then,
n k+3
Za = 1+§—1+n+2(m+n—m)
a€A =5
3n n(2k + 1)
= —+k-1n=——=
5 Hk=1n 2
= Sltn—1+(k-1n
3, 2h+2
= 7+ Z (rj+n—rj)+n:Zb. O
j=k+4 beB

Again we note that the number lying in the type ¢(n) = 2(mod 4)
have been determined as hyper totient numbers by means of Theorem
3.1. However, the determination of all hyper totient numbers from the
type ¢(n) = 0(mod 4) is much difficult and challenging. Since there
are many numbers from second class which do not follow the definition
of hyper totient numbers. For example, ¢(30) = 0(mod 4), but 30 is
not hyper totient, whereas 26 is a hyper totient number and ¢(26) =
0(mod 4) as well. After proving the following result, we characterize the
hyper totient numbers completely. Thus the following theorem is of vital
importance.

Theorem 3.5. An even integer not divisible by 4 of kind p(n) = 0(mod 4)
is hyper totient if and only if there exists residue 1 <r; < (n+2)/2, i =
1, 2,3, -, @(”TJFQ), such that ("T”,ri) =1 and (”;2 —riy, n) = 1.
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Proof. Let n be an even integer not divisible by 4 satisfying the con-
gruence p(n) = 0(mod 4). Suppose there exists a residue r;, 1 < r; <
(n+2)/4, where i = 1, 2, 3, -+, p(2E2), such that (22, r;) =1 =
(2 — p;, n). Without any loss, we take i = 2 and get, (”+2 9) =1=
(”T“ —rg, n). Let k = p(n)/4 > 1 be any integer. The six residues of n

which can be rearranged after renaming as:
ri=1,ro=re, (n+2)/2—ry =13, n—r3=r4, n—ro9 =15, n—1=rg.

The rest of the residues can be rearranged as, 17 < rg < 19 < -+ <
r4. We can partition the set of co-prime residues and including n in the
following two disjoint sets:

A= {rg, 1o, r3}U{ry, 18, -+, rpastU{n—r7, n—rg, -+, n—rris},
B = {ry, r5, ra}U{rgse, -, roprstU{n—rrie, -+, n—ropr3tU{n}.
Then it is clear that,

k+5
2
Z:a—n—l—i-nJr —l—Zn n—r;)
acA
2
"2 k= 1)n
~ n(2k+1)
2
n+2
:1+n—r2+n—(T—r2)+(k¢—2)n+n
2k+3
=l4+n—-ro+n—r3+ Z (rj+n—rj)+n:Zb.
j=k+6 beB

Hence, n is a hyper totient number.

Conversely, suppose n is a hyper totient number of the type p(n) =
O(mod 4). Then by Theorem 1.1, the sum of co-prime residues of n
including n is n(2k+1). But then the sum of residues appearing in both

the disjoint partitioned sets is @

That is,
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n(2k +1) _ Za

2 acA
k-1
= Z(m—i—n—m)—&-n—l—l—s where SZerforsome g
i=1 j
= nk-1)4n—-1+s
= nk—1+s. (2)
Equation (2) is balanced only if s = 22, Since 4 { n, so 22 must

. _ nt2 .
be an integer so, s = "5= is even integer. On contrary we suppose

that there does not exist any residue r;, co-prime to n provided 1 <

ri < (n+2)/2,i=1,2 3 --- | <p(”‘2"2), satisfying the condition

(%2 ;) =1 and (%52 — r;, n) = 1. Then of course, it is impossible to

find their sum as the number s. This further implies that n is not hyper
totient, a contradiction. This completes the proof. [

Theorem 3.6. If the positive integer n € N is hyper totient, then
n(p(n) + 2) is a multiple of 4. Conversely it is true for n > 32, ex-
actly if n > 32 and n(p(n) + 2) is a multiple of 4, then n is hyper
totient.

Proof. If n is hyper totient, then {ry,---,ry@), n} = AU B, where

A and B are disjoint and > a = > b. Letting s denote the common
acA beB
value of the above sum, we have by Theorem 1.1,

2s = Za+szn(gp(n)+2)/2,

a€A beB

so s = n(e(n) 4+ 2)/4. Thus, 4|n(p(n) + 2). This proves the necessary
condition.

For the sufficiency, assume 4|n(p(n) +2). If 4|(¢(n) +2), then n is super
totient by Theorem 3.1. So assume that 4 { (¢p(n)+2). Since n > 32, ¢(n)
is even. Since 4 1 (¢(n) +2), it follows that 2 || ¢(n). Since 4 1 (¢(n) +2)
but 4|n(¢(n) + 2), it follows that 2|n. In particular, n = 2p* for some
positive integer k and prime p with p = 1(mod 4). Consider the following
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numbers

T1, 72,0 5 Tp(n) /25
which are all the numbers smaller than n/2 and coprime to n. Let s =
(p(n)+2)/2.If p > 5, the string of these numbers contains 1,3, --- ,n/2—
4, which are all smaller than n/2, coprime to n, and distinct since n/2 —
4 > 5, which is equivalent to n > 18, which is satisfied for us. There are
s — 3 numbers left. Select t of them say

Tils 5 Tity

where t = ¢(n)/4. The number t is a positive integer since p(n) =
0(mod 4) and n > 32, it is possible to choose t numbers out of s — 3
because s — 3 > t, an inequality equivalent to

(p(n) +2)/2 =3 = p(n)/4,

which is equivalent to ¢(n) > 8. To see that this is satisfied for n > 32,
recall that n = 2p*. We want to show that p*~!(p—1) > 8. If k = 1, then
since n > 32, we get that p > 17, so the above inequality is satisfied. If
k > 2, then either p = 5, in which case k > 3 and so p*~'(p — 1) >
25 -4 > 10, or p > 13, in which case p*~!(p — 1) > 13- 12 > 10. So, the
inequality o(n) > 8 is indeed satisfied for n > 32 of the form n = 2p”
with p = 1(mod 4).

Consider now
A:{l, 3, n/2—4, Tily =5 Tity MW —T41, =" ° n—nt}.

Then A has 3+ 2t elements, the first t+3 < s being distinct and smaller
than n/2 and the last ¢ being distinct and larger than n/2. The sum of
elements of A is

(1434n/2=4)+) (rij+n—ri;) = n/2(14+2p(n)/4) = n(p(n)+2)/4 = s.
j=1

Thus, the complement B of A has sum n(p(n) +2)/2 — s = n(p(n) +
2)/4 =s.
k

Now if n = 2p7* pgz ‘e pf?nm, then clearly n is even and not divisible by
4 and of the kind ¢(n) = 0(mod 4), so by Theorem 3.5, n is hyper
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totient. If n = kalflpgz -o-pkm k> 1 then n is divisible by four, so by
Theorem 3.4, n is hyper totient. [

Remark 3.7. A hyper totient number my not be super totient. For ex-
ample 4 is hyper totient but not a super totient number.

Finally, we prove that the class of Zumkeller numbers is either a sub
class of super totient number or of hyper totient numbers. The assertion
can be entertained in the following theorem.

Theorem 3.8. Every zumkeller number is either a super totient or a
hyper totient number.

Proof. Let n be a zumkeller number then n # 2 | so by Proposition 1.5
the canonical representation of n must contains an odd prime number
with odd exponent. This odd prime number must be of the form p =
1(mod 4) or p = 3(mod 4). If p = 1(mod 4) then by Theorem 2.2, n is
super totient number. However, if p = 3(mod 4), then by Corollary 3.2,
n is hyper totient number. [

Table 1: Totient, Super Totient and Hyper Totient Numbers.

Totient Numbers | Super Totient Numbers | Hyper Totient Numbers

5, 8, 10, 5,8, 10, 12, 13, 14, 3,4,6,7,8,0,
12, 15, 16, 15, 16, 17, 20, 21, 22, | 11, 12, 14, 16, 18, 19,
17, 20, 24, 24, 25, 26, 28, 29, 30, | 20, 22, 23, 24, 26, 27,
30, 32, 34, 32, 33, 34, 35, 36, 37, | 28, 31, 32, 34, 36, 38,
40, 48, 51, 38, 40, 41, 42, 44, 45, | 40, 42, 43, 44, 46, 47,
60, 64, 68, 46, 48, 50, 51, 52, 54, | 48, 49,50, 52, 54, 55,
80, 85, 96. 55, 56, 57, 58,60, 61, | 56, 58, 59, 60, 62, 64,

62, 63, 64, 65, 66, 68, | 66,67, 68, 70, T1, 72,
69, 70, 72, 73, T4, 75, | 74,76, 78, 79, 80, 81,
76, 77,78, 80, 82, 84, 82, 83,84, 86, 88, 90,
85, 86, 87, 88,89, 90, | 92, 94, 96,98, 100.
91, 92, 93, 94, 95, 96,
97, 98, 99, 100.
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Conjecture 3.9. The set of hyper totient numbers is infinite.

In Table 1, we list first hundred numbers of each of the classes for totient
numbers, super totient numbers and hyper totient numbers.

4. Applications of Super Totient Numbers

In previous sections, we introduced and investigated new numbers by
means of Euler’s totient function. It would be more interesting and of
great worth if these numbers could be employed in some well known
mathematics. In our previous work, a super totient labeling over many
graphs such as Wheel graphs, Bipartite graphs, Friendship graphs and
Cyclic graphs has been considered via multiplication [7]. While in this
paper, we demonstrate super toitient labeling in a different way only for
Wheel graphs. The rest of the new defined labeling over other classes
can be validated in a similar technique.

The definition of super totient labeling can also be defined with the
operation of addition together with a constant multiple. Keeping in view
that the super totient labeling was lacking over addition in a previous
work (see, [7]). By incorporating this new definition, we would be able to
develop a new labeling which also agrees as super totient labeling. The
validity of this new labeling has been shown in Fig.1. For instance, there
is no edge between vertices 3 and 4 as 1 x 3 +4 = 7, is not a super
totient number for £ = 1. While in [7], there was an edge between 3 and
4 since 3 X 4 = 12, is a super totient number.

Definition 4.1. Let V be the set of vertices and E be the set of edges
of given graph G. A one-one function h : V. — N is call as super totient
labeling of the graph G, if the induced function h* : E — N given by
h*(xy) = kh(z) + h(y) allocates a super totient number, ¥V zy € E,
where x,y € V and k is any positive integer but not fized.

Definition 4.2. We call a graph as super totient graph if it satisfies a
super totient labeling.

Example 4.3. Let V = {3,4,5,6,7,8} be the vertex set of graph G,
then by the induced function h*(zy) = h(x) + h(y), we obtain a super
totient graph in Fig.1.
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Figure 1. Super totient graph

Definition 4.4. [/] A graph G with n+1 vertices is called a wheel graph
if the vertices of cyclic graph vy,v2,vs,...,v, are adjacent with central
vertex vg.

Theorem 4.5. The Wheel graph W, is super totient graph i.e, W, states
a super totient labeling.

Proof. Let vg be the central vertex of a given wheel graph and vy, vo, vs, - -
v,. Be the remaining vertices of wheel graph. Define the edge set
E of W, by: E = {e; = wov;, i = 1,2,...,n} U {e; = vvi1, i =
1,2,...,n—1}U{v,v; = e }. We deliberate the cases n = 2t and n = 2t+1
for some t. Let n = 2t, t € Z" and p, ¢ be distinct odd primes. We es-
tablish an one-one function h: V — N as:
1, ifi=0
h(vi) = pE, p= 1(mod 4) if 7 is odd
qz, 3# q=3(mod4) if iiseven

Now, we define an induced function h* on h:

h*(ei) = h*(vivig1) = h(vi) + h(vig1),i =1+ 2t,t € ZT, (3)
h(e)) = h*(vivig1) = h(vig1) + h(v;),i = 2t, t € OF, (4)
h*(e;) = h*(vivis1) = 3h(vis1) + h(v;),i = 4t, 4t — 1, t € ZT, (5)
h*(e;) = h*(vovi) = h(vo) + h(v;), t € OF, (6)
h*(e;) = h*(vovi) = 3h(vo) + h(v),i = 4t, t € Z7F, (7)
K (e;) = h*(vovi) = 3h(vo) + h(vs),i =1+ 2t,t € ZT. (8)
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Where, O is the set of odd positive integers and Z* is the set of positive
integers. Applying definition of h, we obtain,

h'(ei) = h*(vivis1) = h(vi) + h(vig1)

—p T 4qg T i=142te Tt (9)
h(e;) = h*(wvm) = h(vit1) + h(vs)
—q2+p2 i=2t teO", (10)

h*(el) = h*(UZ'Ui+1) = 3h(vi+1) -|- h(?)l)
=3ps 4qii=A4t, 4t —1, teZT, (11)

W (e) = h*(vovs) = h(ve) + h(vi) = 1+ q2,i = 2t, t € OF, (12)
h*(e;) = h*(vovi) = 3h(vo) + h(vi) =3+ q2,i =4t, t € ZT, (13)
h*(e;) = h*(vovi) = 3h(vo) + h(v;)

—3+pT,i=1+2teZt (14)

Slnce p= 1(m0d 4) and 3 # q = 3(mod 4) thus p 5 —|—q £ . gz +
p = 3p2 —I—q i , 1+q2, 3+q2 and 3+ p 5 all are multiple of 4 and
greater then 4, so by Lemma 2.1, equation (9)—(14) are super totient
number.

Now if n = 2t + 1, t € Z" then, we take distinct odd primes p and
q. We define a one-to-one function h by:

L, if i=0

h(v;) = PT, p = 1(mod 4) if z is odd
qz, 3#q=3(mod4) ifiiseven
3, ifi=n

Also we define an induced function A* to h as follows,

Equations (15)—(20) follow the previous case, so we only to prove that
the equations (21)—(24) assign super totient numbers.
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h*(e;) = h*(vivir1) = h(vi) + h(vig1),i =1+ 2t t € ZF, (15)
h*(ei) = h*(vivig1) = h(vig1) + h(vy),i =2t, t € 0T, (16)
h*(e;)) = h*(viviz1) = 3h(vigr) + h(v;)
i=4tori+1=4t, tcZ", (17)
h*(e;) = h*(vovi) = h(vo) + h(v;), t € OF, (18)
h*(e;) = h*(vovi) = 3h(vo) + h(v),i = 4t, t € ZF, (19)
h*(e;) = h*(vovi) = 3h(vo) + h(vi),i =1+ 2t,t € Z+,  (20)
h*(e,) = h*(vovn) = 5h(vo) + h(vn), (21)
h(en—1) = h*(vp—1vn) = h(ve_1) + 3h(vy)
n—1=2t tcOt, (22)
h*(en—1) = h"(vp—1vn) = h(vp—1) + h(vy)
n—1=4t, teZ", (23)
h*(en) = h*(vav1) = h(vy) + h(v1). (24)

= h*(vous) = 5h(vo) + h(v,) =5+ 3 =8, (25)

*(Un_1Vn) = h(vn_1) + 3h(vy) = "= +9, (26)
= W*(Vp_1vn) = h(vn_1) + h(v,) = ¢ +3,  (27)
= h*(vpv1) = h(vy) + h(v1) =3+ p. (28)

>
*
—~
)
3
_
S— N— N—
I
>

Since, p = 1(mod 4) and 3 # q¢ = 3(mod 4), thus ¢ T +9, ¢ "I 43
and 3 + p are multiple 4 and greater then 4, so by Lemma 2.1, equation
(25)—(28) assign super totient number. In both cases wheel graph admits
a super totient labeling. [

Example 4.6. For xg = 1, p = 5 and ¢ = 7, the super totient wheel
graph Wy and for xg,p =5, ¢ = 7 and x7 = 3 the super totient wheel
graph Wyg is described in Fig.2.
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Figure 2. Super totient wheel graphs

Algorithm
This algorithm gives the set of wheel graph W,, in such a way that edges
of wheel graph states a super totient number.
Step (a).
W, a wheel graph over n vertices;
V' : Set of vertices of W,,;
E : Set of edges of W,, and E = {e; = vovi, 1 =1,2,...,n}U{e; =
Vivi+1, 1 =1,2,...,n — 1} U{v,v = e}
h : h is an injective function on V;
p, q: p, q are distinct odd prime;
Set h(vg) = 1;
Step (b). do
{ if n=2t te€Z" then
{
fori=1,3,....n—1 do
{ |
h(v;) =p'+
h(vii1) =g

}

}

else

{

fori=1,3,....n—2 do
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{ .
h(vi) =p7
h(vier) =47
}

}

—~— e

for 1 <i<ndo
for 1 <j<ndo
Step (c) If n is even then
h*(e;) = h*(vivig1) = h(vi) + h(vig1),i = 1+ 2t,t € ZT
h*(e;) = h*(viviz1) = h(vit1) + h(v;),i = 2t, t € O
h*(e;) = (UZ’UZ+1) = 3h(vig1)+h(v;),i =4t ori+1=4t,, t € Z"

h*(e;) = h*(vovi) = h(vg) + h(v;), t € OF
h*(e;) h*(vov;) = 3h(vo) + h(v;),i = 4t, t € Z*
h*(e;) R*(vov;) = 3h(vo) + h(v;),i =1+ 2t,t € ZF
}
else
{
h*(ez) h*(UZU1+1) h(’UZ) + h(U/L'Jrl),i =14+2tte 7+
h* ei) h* (vﬂ)z—H) = h(’UH_l) + h(v,-),i =2t te ot
h*(e;) = h*(vvig1) = 3h(vig1) +h(v;),i =4t ori+1 =4t,, t € ZT
h*(e;) = h*(vovi) = h(vo) + h(vi), t € OF
h*(e;) = h*(vovi) = 3h(vo) + h(v;),i = 4t, t € Z*
h*(e;) = h*(vovi) = 3h(vo) + h(vy),i =1+ 2t,t € ZF)
h*(e,,) = h*(vovn) = 5h(v0) + h(vp)
h*(en—1) = h*(vp—1vp) = h(vp—1) + 3h(vy), n—1=2t, t € O
h*(en—1) = h*(vp—1vn) = h(vn—1) + h(vy), n—1=4t, t € Z*+
h*(en) = h*(vpv1) = h(vy) + h(v1)
}
Step (d). Output (super totient wheel graph W,,).
}
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