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On the Semilinear Equation with an
Exponential Decay Memory Term
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Abstract. The main purpose of this paper is to study the non-existence
of weak global solutions to the following semi-linear equation with ex-
ponential decay memory term, namely

utt + (−∆)
γ
2 ut + u−

∫ t

0

eτ−tu(τ, x)dτ = |u|p, x ∈ IRn, t > 0,

u(0, x) = u0(x), x ∈ IRn,

where γ ∈ (0, 2], p > 1, and (−∆)
γ
2 is the fractional Laplacian

operator of order γ
2
. We extend our result to the case of 2 × 2-system

of the same type. Our technique of proof is the so-called method of test
function.
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1 Introduction

The main motivation behind this paper is to study the non-existence of
weak global solutions to the following semi-linear equation with expo-
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nential decay memory term:
utt + (−∆)

γ
2 ut + u−

∫ t

0
eτ−tu(τ, x)dτ = |u|p, t > 0,

u(0, x) = u0(x), x ∈ IRn,

(1)

where p > 1, n ≥ 1, γ ∈ (0, 2], and (−∆)
γ
2 is the fractional Laplacian

operator of order γ
2 . Then we extend our analysis to the case of a 2× 2

system of the same type, namely

utt + (−∆)
γ
2 ut + u−

∫ t

0
eτ−tu(τ, x)dτ = |v|p, x ∈ IRn,

vtt + (−∆)
γ
2 vt + v −

∫ t

0
eτ−tv(τ, x)dτ = |u|q, x ∈ IRn,

u(0, x) = u0(x), x ∈ IRn,

v(0, x) = v0(x), x ∈ IRn,

(2)

We mention below some motivations for studying the considered prob-
lems.
Recently, in [3], the following Cauchy problem

ytt −∆y + (−∆)ϱ1yt = |z|p, x ∈ IRn, t > 0,

ztt −∆z + (−∆)ϱ2zt = |y|q, x ∈ IRn, t > 0,

y(0, x) = y0(x), yt(0, x) = y1(x),

z(0, x) = z0(x), zt(0, x) = z1(x) x ∈ IRn,

(3)

is considered. It was shown that
If ϱ1, ϱ2 ∈

[
0, 12
]
, y0 = y1 = 0 and y1, z1 ∈ IL1(IRn) such that∫
IRn

y1(x)dx > ε1,

∫
IRn

y1(x)dx > ε2,
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and

n

2
≤

1 + q 1−ϱ2
1−ϱ1

+ (pq − 1)ϱ2

(q − 1)ϱ1−ϱ2
1−ϱ2

+ (pq − 1)
if ϱ1 ≥ ϱ2,

n

2
≤

1 + p1−ϱ1
1−ϱ2

+ (pq − 1)ϱ2

(p− 1)ϱ2−ϱ1
1−ϱ1

+ (pq − 1)
if ϱ2 ≥ ϱ1.

Then, there is no global (in time) Sobolev solution
(y, z) ∈ C

(
[0,∞)× IL2(IRn)

)
× C

(
[0,∞)× IL2(IRn)

)
to (3). Very re-

cently, the following Cauchy problem for the semi linear σ-evolution
models with memory term:

ytt + (−∆)σy + y − g ∗ y = |y|p, x ∈ IRn, t > 0,

y(0, x) = y0(x), yt(0, x) = y1(x) x ∈ IRn,
(4)

has been studied by Wenhui Chen and Tuan Anh Dao [1]. It was shown
in [1] that if

1 < p < 1 + 2mσ
n , y1 ∈ ILm(IRn),

∫
IRn

y1(x)dx > 0 (m = 1);

y1(x) ≥ |x|−
n
m

(
log(1 + |x|)

)−1
m ∈ (1, 2),

then, there is no global (in time) weak solution to (4). As far as we
know that one of the most typically important methods to verify the
non-existence of global weak solutions is the well-known test function
method. Concretely, this method is used to prove the nonexistence
of global solutions by a contradiction argument. However, standard
test function method seems difficult to directly apply to (1) contain-
ing pseudo-differential operators (−∆)

α
2 for any α ∈ (0, 2], well-known

non-local operators. To overcome the difficulty caused by the nonlocal
property of the fractional Laplacian operator, D’ Abbicco and Reissig [2]
investigated the structurally damped wave equation with the power non-
linearity |u|p. The critical exponent has been studied and they proposed
to distinguish between (parabolic models) in the case σ ∈ (0, 1], the
so-called effective damping, and (hyperbolic models) in the remaining
case σ ∈ (1, 2], the so-called noneffective damping according to expected
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decay estimates. In the former case, they proved the existence of global
(in time) solutions when

p > pc = 1 +
2

(n− σ)+

for the small initial data and low space dimensions 2 ≤ n ≤ 4 by using
the energy estimates. Over the last years, the evolution equations with
memory terms has been studied by several authors (see, for example, [6],
[7], [8], [9] ). Furthermore, we want to underline that, the Cauchy prob-
lem for the evolution equations with memory terms have caught a lot of
attention from many mathematicians due to their wide applications in
physics, mechanics and so on but to our knowledge, the equation has not
been widely investigated in the case of presence of non-local operators.
For other contributions related to the evolution equations with memory
terms, see ([9],[10]), for example and the references therein. Motivated
by the above contributions, in particular by [1], our goal in this paper
is to investigate problems (1) and (2).

Before stating our main results, we introduce some important fun-
damental definitions that will be needed for obtaining our results in the
next sections.

Definition 1.1. ([5],[11]) Let s ∈ (0, 1). Let X be a suitable set of
functions defined on IRn. Then, the fractional Laplacian (−∆)s in IRnis
a non-local operator given by

(−∆)s : f ∈ X → (−∆)sf(x) = Cn,s P.V

∫
IRn

f(x)− f(y)

|x− y|n+2s
dy,

where P.V stands for the Cauchy’s principal value, and

Cn,s =
4sΓ

(
n
2 + s

)
π

n
2 Γ(−s)

is the normalization constant and Γ denotes the Gamma function.

We are now in a position, to state the main results of this manuscript.
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Theorem 1.2. Let γ ∈ (0, 2] and γ̃ = min{1, γ}. We suppose that
u1 ∈ IL1(IRn) such that: ∫

IRn
u1(x)dx > 0. (5)

If

1 < p ≤ 1 +
γ̃

n
, n ≥ 1, (6)

then, there is no global (in time) weak solution u ∈ C
(
[0,+∞[, IL2(IRn)

)
to problem (1).

Theorem 1.3. Let γ, β ∈ (0, 2], γ̃ = min{1, γ}, and β̃ = min{1, β}.
We assume that u1 ∈ IL1(IRn) and v1 ∈ IL1(IRn) satisfying the following
conditions: ∫

IRn
u1(x)dx > 0 and

∫
IRn

v1(x)dx > 0. (7)

If

n ≤ 1

pq − 1
max

{
β̃ + γ̃p, γ̃ + β̃q

}
, n ≥ 1, (8)

then, there is no global (in time) weak solution
(u, v) ∈ C

(
[0,+∞[, IL2(IRn)

)
× C

(
[0,+∞[, IL2(IRn)

)
to (2). Therefore,

the blow-up time Tε is estimated by

Tε ≤ Cε
− γ̃

γ̃+β̃q
pq−1 −n for all small positive constants ε. (9)

Our main theorems will be proved in the next section.

2 Proofs

In this section, we give the proofs of Theorems 1.2 and 1.3. We shall use
the nonlinear capacity method combined with the following pointwise
estimate (see Dao and Reissig [4]).
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Lemma 2.1. ([4]) Let ⟨x⟩ =
(
1 + |x|2

) 1
2 . Let s ∈ (0, 1) and

χ : IRn → IR be the function defined by

χ(x) =


⟨x⟩−n−2s if |x| ≥ 1,

1 if |x| ≤ 1.
(10)

Then χ ∈ C2(IRn), and the following estimate holds

|(−∆)sχ(x)| ≤ Cχ(x), x ∈ IRn, (11)

where C is a constant independent of x.

Lemma 2.2. ([4]) Let s ∈ (0, 1). Let ζ be a smooth function satisfying
∂2xζ ∈ IL∞(IRn). For any R > 0, let ζR be a function defined by

ζR(x) = ζ
( x
R

)
, for all x ∈ IRn.

Then, (−∆)sζR satisfies the following scaling properties:

(−∆)s(ζR)(x) = R−2s(−∆)sζ
( x
R

)
for all x ∈ IRn.

Remark 2.3. Throughout, C denotes a positive constant, whose value
may change from line to line.

Proof. [Theorem 1.2] Let u be a global weak solution to (1). First, we
introduce the function χ = χ(x) as defined in (10) with s = γ

2 and the
function ξ = ξ(t) having the following properties:

1. ξ ∈ C∞
0 ([0,∞)) and ξ(t) =


1 if 0 ≤ t ≤ 1

2 ,

↘ if 1
2 ≤ t ≤ 1,

0 if t ≥ 1.

2. ξ
− p′

p (t)
(
|ξ′(t)|p′ + |ξ′′(t)|p′ + |ξ′′′(t)|p′

)
≤ C for any t ∈ [12 , 1].
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Let R be a large parameter in [0,∞). We introduce the following test
function:

ψR(x, t) = ξR(t)θR(x),

where ξR(t) = ξ(R−γ̃t)) and θR(x) = θ(R−1x). Moreover, we check
easily that supp(ξ) ⊂ [0, Rγ̃ ]. We define the functionals as follows

I1 =

∫ +∞

0

∫
IRn

|u(x, t)|pψR(t, x)dxdt,

I2 =

∫ +∞

0

∫
IRn

|u(x, t)|p∂tψR(t, x)dxdt.

Observing from the exponential memory kernel having the property

∂

∂t

∫ t

0
eτ−tu(τ, x)dτ = u(t, x)−

∫ t

0
eτ−tu(τ, x)dτ. (12)

By performing once integration by parts, we obtain

I1 − I2 =

∫ +∞

0

∫
IRn

(
utt(t, x) + (−∆)

γ
2 ut(t, x) + u(t, x)

−
∫ t

0
eτ−tu(τ, x)dτ

)
ψR(x, t)dxdt

+

∫ +∞

0

∫
IRn

(
uttt(t, x) + (−∆)

γ
2 utt(t, x) + ut(t, x)

− u(t, x) +

∫ t

0
eτ−tu(τ, x)dτ

)
ψR(x, t)dxdt

−
∫
IRn

(
utt(t, x) + (−∆)

γ
2 ut(t, x) + u(t, x)

−
∫ t

0
eτ−tu(τ, x)dτ

)
ψR(x, t)

∣∣∣∣t=+∞

t=0

dx

=

∫ +∞

0

∫
IRn

(
uttt(t, x) + utt(t, x) + (−∆)

γ
2 utt(t, x)

+ (−∆)
γ
2 ut(t, x) + ut(t, x)

)
ψR(x, t)dxdt.
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Applying several times integration by parts in the above identity, one
has

I1 − I2 = −
∫
IRn

u1(x)θR(x)dx

−
∫ +∞

0

∫
IRn

u(t, x)
(
∂3t ψR(x, t)− ∂2t ψR(x, t) + ∂tψR(x, t)

)
dxdt

+

∫ +∞

0

∫
IRn

(−∆)
γ
2 u(t, x)

(
∂2t ψR(x, t)− ∂tψR(x, t)

)
dxdt

= −
∫
IRn

u1(x)θR(x)dx+ J1 + J2.

(13)

Applying Holder’s inequality with 1
p + 1

p′ = 1, we can proceed the
estimate for J1 as follows:

|J1| ≤ C

∫ Rγ̃

Rγ̃

2

∫
IRn

|u(x, t)|
(
|ξ′′′R (t)|+ |ξ′′R(t)|+ |ξ′R(t)|

)
θR(x)dxdt

≤

(∫ Rγ̃

Rγ̃

2

∫
IRn

(
|u(x, t)|ψ

1
p

R(t, x))

)p
) 1

p

×

(∫ Rγ̃

Rγ̃

2

∫
IRn

(
|ξ′′′R (t)|+ |ξ′′R(t)|+ |ξ′R(t)|)θR(x)ψ

− 1
p

R (t, x)

)p′
) 1

p′

≤ CI
1
p

1

(∫ Rγ̃

Rγ̃

2

∫
IRn

η
− p′

p

R (t)
(
|ξ′′′R (t)|p′ + |ξ′′R(t)|p

′
+ |ξ′R(t)|p

′
)
θR(x)dxdt

) 1
p′

Using change of variables t̃ = R−γ̃t and x̃ = R−1x, we get

|J1| ≤ CI
1
p

1 R
−γ̃+n+γ̃

p′

(∫
IRn

⟨x̃⟩−n−γ

) 1
p′

≤ CI
1
p

1 R
−γ̃+n+γ̃

p′ . (14)

Now let us turn to estimate J2.∫ +∞

0

∫
IRn

(−∆)
γ
2 u(t, x)

(
∂2t ψR(x, t)− ∂tψR(x, t)

)
dxdt =∫ +∞

0

∫
IRn

u(t, x)
(
(−∆)

γ
2 ∂2t ψR(x, t)− (−∆)

γ
2 ∂tψR(x, t)

)
dxdt

=

∫ +∞

0

∫
IRn

u(t, x)(−∆)
γ
2 θR(x)

(
ξ′′R(t)− ξ′R(t)

)
dxdt.
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Applying Holder’s inequality again as we estimated J1 leads to

|J2| ≤ CI
1
p

1

(∫ Rγ̃

Rγ̃

2

∫
IRn

ξ
− p′

p

R (t)
(
|ξ′′R(t)|p

′
+ |ξ′R(t)|p

′
)

|(−∆)
γ
2 θR(x)|p

′
)(θR(x))

− p′
p dxdt

) 1
p′

≤ CI
1
p

1 R
−γ̃+n+γ̃

p′

(∫
IRn

⟨x̃⟩−n−γ

) 1
p′

≤ CI
1
p

1 R
−γ̃+n+γ̃

p′ .

(15)

Combining the estimates from (13) to (15) we may arrive at

I1 − I2 +

∫
IRn

u1(x)θR(x)dx ≤ CI
1
p

1 R
−γ̃+n+γ̃

p′ . (16)

Moreover, it is clear by applying Young’s inequality, that

1

p′
I1 − I2 +

∫
IRn

u1(x)θR(x)dx ≤ CR−γ̃p′+n+γ̃ . (17)

Due to the setting that the test function ξ(t) is a non-increasing function,
one has ξ′(t) ≤ 0. In other words, it holds that I2 ≥ 0. Which follows
from (17) that

I1 ≤ CR−γ̃p′+n+γ̃ , (18)

and ∫
IRn

u1(x)θR(x)dx ≤ CR−γ̃p′+n+γ̃ . (19)

It is clear that the assumption (6) is equivalent to −γ̃p′+n+ γ̃ ≤ 0. For
this reason, we will split our consideration into two cases.

Case 1: In the subcritical case −γ̃p′ + n+ γ̃ < 0, letting R→ ∞ in
(19) we easily deduce ∫

IRn
u1(x)dx ≤ 0,

which contradicts the assumption (5).
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Case 2: For the critical case −γ̃p′+n+ γ̃ = 0, from (18) we can see
that I1 ≤ C. By using again (16) we may conclude

0 <

∫
IRn

u1(x)θR(x)dx

≤ C

(∫ Rγ̃

Rγ̃

2

∫
{x∈IRn; |x|≤R}

|u(x, t)|pψR(t, x)dxdt

) 1
p

−
∫ Rγ̃

0

∫
{x∈IRn; R

2
≤|x|≤R}

|u(x, t)|pψR(t, x)dxdt.

(20)

Letting R→ +∞ in (20), we get again a contradiction to the assumption
(5). Summarizing, the proof of the Theorem 1.2 is completed. □
Proof.[Theorem 1.3] First, we introduce the same test function as in
Theorem 1.1. Let us assume that (u, v) is the global solution to (2). We
define the functionals

I1 =

∫ +∞

0

∫
IRn

|u(x, t)|qψR(t, x)dxdt,

I2 =

∫ +∞

0

∫
IRn

|u(x, t)|q∂tψR(t, x)dxdt,

J1 =

∫ +∞

0

∫
IRn

|v(x, t)|pψR(t, x)dxdt,

J2 =

∫ +∞

0

∫
IRn

|v(x, t)|p∂tψR(t, x)dxdt.

Repeating the steps of the proof from (14) to (20) we may conclude
the following estimates:

I1 − I2 +

∫
IRn

v1(x)θR(x)dx ≤ CJ
1
p

1 R
−γ̃+n+γ̃

p′ . (21)

In the analogous way, one obtains

J1 − J2 +

∫
IRn

u1(x)θR(x)dx ≤ CI
1
q

1 R
−β̃+n+β̃

q′ . (22)
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From (21) and (22) we obtain

I
pq−1
pq

1 ≤ R

(
−β̃+n+β̃

p′

)
1
q
−γ̃+n+γ̃

q′ = Rλ1 , (23)

J
pq−1
pq

1 ≤ R

(
−γ̃+n+γ̃

q′

)
1
p
−β̃+n+β̃

p′ = Rλ2 . (24)

It is clear that the assumption (8) is equivalent to max{λ1, λ2} ≤ 0. For
this reason, we will split our consideration into two cases.

Case 1: In the subcritical case max{λ1, λ2} < 0, letting R → ∞ in
(23)and (24) we easily deduce∫

IRn
v1(x)dx ≤ 0 and

∫
IRn

u1(x)dx ≤ 0,

which contradicts the assumption (7).

Case 2: For the critical case max{λ1, λ2} = 0, from (24) we can see
that J1 ≤ C. Using Beppo Levi’s theorem on monotone convergence,
one obtains∫ ∞

0

∫
IRn

|v(x, t)|pdxdt = lim
R→∞

∫ Rγ̃

0

∫
IRn

|v(x, t)|pψR(x, t)dxdt

= lim
R→∞

J1 ≤ C.

(25)

We deduce easily that∫ Rγ̃

Rγ̃

2

∫
{x∈IRn; R

2
≤|x|≤R}

|v(x, t)|pψR(x, t)dxdt→ 0 as R→ +∞.

Repeating the steps of the proof from (16) to (20) we may conclude
the following estimates:

J1 − J2 +

∫
IRn

u1(x)θR(x)dx

≤ C

(∫ Rγ̃

Rγ̃

2

∫
{x∈IRn; R

2
≤|x|≤R}

|u(x, t)|qψR(t, x)dxdt

) 1
q

R
−β̃+n+β̃

q′ ,
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and

I1 − I2 +

∫
IRn

v1(x)θR(x)dxdx

≤ C

(∫ Rγ̃

Rγ̃

2

∫
{x∈IRn; R

2
≤|x|≤R}

|v(x, t)|pψR(t, x)dxdt

) 1
p

R
−γ̃+n+γ̃

p′ .

Considering all the above estimates, and since max{λ1, λ2} = 0 we
easily conclude that

J1 − J2 +

∫
IRn

u1(x)θR(x)dx

≤ C

(∫ Rγ̃

Rγ̃

2

∫
{x∈IRn; R

2
≤|x|≤R}

|v(x, t)|pψR(t, x)dxdt

) 1
pq

.

(26)

Taking the limit as R→ ∞ in (26), one obtains∫ +∞

0

∫
IRn

|v(x, t)|qdxdt+
∫
IRn

u1(x)θR(x)dx = 0,

which is a contradiction to (7). Let us now consider the case of sub-
critical exponent to prove the estimate for lifespan Tε of solutions to
(2). We assume that (u, v) = (u(x, t), v(x, t), is a local solution to
(2). In order to prove the lifespan estimate, we replace the initial data
(0, u1, u2), (0, v1, v2) by (0, εf1, εf2), (0, εg1, εg2) with a small constant
ε > 0, where (f1, f2), (g1, g2) ∈ H1(IRn) × IL2(IRn) satisfy the assump-
tion (7). Repeating the steps in the above proofs we arrive at the fol-
lowing estimate:

I1 − I2 + cε ≤ J
1
q

1 R
−γ̃+n+γ̃

q′ , (27)

and

J1 − J2 + cε ≤ I
1
p

1 R
−β̃+n+β̃

p′ . (28)

If we plug (27) in (28), we find

J1 + Cε ≤ CJ
1
pq

1 R

(
−β̃+n+β̃

p′

)
+
(
−γ̃+n+γ̃

q′

)
1
p . (29)
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We easily obtains that

Cε ≤ CJ
1
pq

1 R

(
−β̃+n+β̃

p′

)
+
(
−γ̃+n+γ̃

q′

)
1
p − J1,

which leads to

ε ≤ CR
−
[
γ̃+β̃q
pq−1

−n
]
.

Let R = T
1
γ̃ , then with a standard calculation, one has

Tε ≤ ε
− γ̃(pq−1)

γ̃+β̃q−n(pq−1) .

This completes the proof of Theorem 1.3. □
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